满分5 > 高中数学试题 >

设x1,x2是函数的两个极值点,且|x1-x2|=2. (Ⅰ)证明:0<a≤1;...

设x1,x2是函数manfen5.com 满分网的两个极值点,且|x1-x2|=2.
(Ⅰ)证明:0<a≤1;
(Ⅱ)证明:manfen5.com 满分网
(I)对函数求导可得,f′(x)=ax2+bx-a2,由题意可得x1,x2是方程的两根,根据方程的根与系数的关系可得x1+x2,x1•x2,而,代入可求 (II)由(I)可得b2=4a2-4a3,构造函数g(a)=4a2-4a3,利用导数知识求函数g(a)的单调区间及最值,而b2≤g(a)max,即可. 【解析】 (Ⅰ)对f(x)求导可得f'(x)=ax2+bx-a2(a>0).(2分) 因为x1,x2是f(x)的两个极值点,所以x1,x2是方程f'(x)=0的两个实根. 于是, 故, 即b2=4a2-4a3.(4分) 由b2≥0得4a2-4a3≥0,解得a≤1.a>0, 所以0<a≤1得证.(6分) (Ⅱ)由(Ⅰ)知b2=4a2-4a3,设g(a)=4a2-4a3, 则g'(a)=8a-12a2=4a(2-3a).(8分) 由g'(a)>0;g'(a)<0.(10分) 故g(a)在时取得最大值, 即, 所以.(13分)
复制答案
考点分析:
相关试题推荐
在长方体ABCD-A1B1C1D1中,AB=4,BC=2,CC1=3,manfen5.com 满分网
(1)求点D1到平面BDE的距离;
(2)求直线A1B与平面BDE所成角的正弦值.

manfen5.com 满分网 查看答案
在空间四边形OABC中,OA=8,AB=6,AC=4,BC=5,∠OAC=45°,∠OAB=60°.则异面直线AO与BC的夹角的余弦值为   
manfen5.com 满分网 查看答案
函数f(x)=x3+ax2+bx+a2在x=1处有极值10,则a=    查看答案
单个蜂巢可以近似地看作一个正六边形图形,如图所示,这是一组蜂巢的图形,设第(1)图中有1个蜂巢,第(2)图中有7个蜂巢,第(3)图中有19个蜂巢,按此规律,第(5)图中有个    蜂巢,
manfen5.com 满分网 查看答案
设a,b∈R,a2+b2=2,则a+b的最大值是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.