满分5 > 高中数学试题 >

定义:若函数f(x)对于其定义域内的某一数x,有f(x)=x,则称x是f(x)的...

定义:若函数f(x)对于其定义域内的某一数x,有f(x)=x,则称x是f(x)的一个不动点.已知函数f(x)=ax2+(b+1)x+b-1(a≠0).
(1)当a=1,b=-2时,求函数f(x)的不动点;
(2)若对任意的实数b,函数f(x)恒有两个不动点,求a的取值范围;
(3)在(2)的条件下,若y=f(x)图象上两个点A、B的横坐标是函数f(x)的不动点,且A、B的中点C在函数manfen5.com 满分网的图象上,求b的最小值.
(参考公式:A(x1,y1),B(x2,y2)的中点坐标为manfen5.com 满分网
(I)将a=1,b=-2代入f(x)=ax2+(b+1)x+b-1 (a≠0),求出f(x),令f(x)=x,解方程求不动点即可; (II)由ax2+(b+1)x+b-1=x有两个不动点,即ax2+bx+b-1=0有两个不等实根,可通过判别式大于0得到关于参数a,b的不等式b2-4ab+4a>0,由于此不等式恒成立,配方可得b2-4ab+4a=(b-2a)2+4a-4a2>0恒成立,将此不等式恒成立转化为4a-4a2>0即可. (III)由于本小题需要根据两个点A、B的坐标转化点关于线的对称这一条件,故可以先设出两点的坐标分别为A(x1,x1),B(x2,x2)(x1≠x2),可以得到x1+x2=,由此联想到根与系数的关系,由(II)知,x1、x2应是方程ax2+bx+b-1=0的根,故又可得x1+x2=-,至此题设中的条件转化为-=,观察发现参数b可以表示成参数a的函数即 ,至此,求参数b的问题转化为求b关于a的函数最小值的问题. 【解析】 (1)f(x)=x2-x-3,由x2-x-3=x, 解得x=3或x=-1,所以所求的不动点为-1或3. (2)令ax2+(b+1)x+b-1=x,则ax2+bx+b-1=0① 由题意,方程①恒有两个不等实根,所以△=b2-4a(b-1)>0, 即b2-4ab+4a>0恒成立, 则△'=16a2-16a<0,故0<a<1 (3)设A(x1,x1),B(x2,x2)(x1≠x2),, 又AB的中点在该直线上,所以, ∴, 而x1、x2应是方程①的两个根,所以,即, ∴=-=- ∴当a=∈(0,1)时,bmin=-1
复制答案
考点分析:
相关试题推荐
已知函数manfen5.com 满分网
(1)求证:不论a为何实数f(x)总是为增函数;
(2)确定a的值,使f(x)为奇函数;
(3)当f(x)为奇函数时,求f(x)的值域.
查看答案
某民营企业生产A、B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1所示;B产品的利润与投资的算术平方根成正比,其关系如图2所示(利润与投资单位:万元).
manfen5.com 满分网
(1)分别将A、B两种产品的利润表示为投资的函数关系式;
(2)该企业已筹集到10万元资金,并全部投入A、B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元?
查看答案
设函数manfen5.com 满分网如果f(x)<1,求x的取值范围.
查看答案
(1)计算:manfen5.com 满分网
(2)已知:lg(x-1)+lg(x-2)=lg2,求x的值.
查看答案
已知集合A={x|3≤x<7},B={x|2<x<10},C={x|5-a<x<a}.
(1)求A∪B,(∁RA)∩B;
(2)若C⊆(A∪B),求a的取值范围.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.