满分5 > 高中数学试题 >

已知椭圆C1、抛物线C2的焦点均在x轴上,C1的中心和C2的顶点均为原点O,从每...

已知椭圆C1、抛物线C2的焦点均在x轴上,C1的中心和C2的顶点均为原点O,从每条曲线上取两个点,将其坐标记录于下表中:
x3-24manfen5.com 满分网
y-2manfen5.com 满分网-4manfen5.com 满分网
(Ⅰ)求C1、C2的标准方程;
(Ⅱ)请问是否存在直线l满足条件:①过C2的焦点F;②与C1交不同两点M、N且满足manfen5.com 满分网?若存在,求出直线l的方程;若不存在,说明理由.
(Ⅰ)设抛物线C2:y2=2px(p≠0),则有,据此验证4个点知(3,-2)、(4,-4)在抛物线上,易求C2:y2=4x,设C1:,把点(-2,0)()代入得:,由此能够求出C1方程. (Ⅱ)容易验证直线l的斜率不存在时,不满足题意;当直线l斜率存在时,假设存在直线l过抛物线焦点F(1,0), 设其方程为y=k(x-1),与C1的交点坐标为M(x1,y1),N(x2,y2),由消掉y,得(1+4k2)x2-8k2x+4(k2-1)=0,再由韦达定理能够导出存在直线l满足条件,且l的方程为:y=2x-2或y=-2x+2. 【解析】 (Ⅰ)设抛物线C2:y2=2px(p≠0),则有,据此验证4个点知(3,-2)、(4,-4)在抛物线上,易求C2:y2=4x(2分) 设C1:,把点(-2,0)()代入得: 解得 ∴C1方程为(5分) (Ⅱ)容易验证直线l的斜率不存在时,不满足题意;(6分) 当直线l斜率存在时,假设存在直线l过抛物线焦点F(1,0), 设其方程为y=k(x-1),与C1的交点坐标为M(x1,y1),N(x2,y2) 由消掉y,得(1+4k2)x2-8k2x+4(k2-1)=0,(8分) 于是,① y1y2=k(x1-1)×k(x1-1)=k2[x1x2-(x1+x2)+1] 即②(10分) 由,即,得x1x2+y1y2=0(*), 将①、②代入(*)式,得,解得k=±2;(11分) 所以存在直线l满足条件,且l的方程为:y=2x-2或y=-2x+2.(12分).
复制答案
考点分析:
相关试题推荐
如图,在底面为直角梯形的四棱锥P-ABCD中AD∥BC,∠ABC=90°,PD⊥平面ABCD,AD=1,AB=manfen5.com 满分网,BC=4.
(1)求证:BD⊥PC;
(2)当PD=1时,求此四棱锥的表面积.

manfen5.com 满分网 查看答案
已知数列{an}满足a1=1,an+1=2an+1(n∈N*).
(1)求证:数列{an+1}是等比数列,并写出数列{an}的通项公式;
(2)若数列{bn}满足manfen5.com 满分网manfen5.com 满分网,求数列{bn}的前n项和Sn
查看答案
已知函数f(x)=2cosxsin(x+manfen5.com 满分网)-manfen5.com 满分网
(1)求函数f(x)的最小正周期;
(2)在给定的坐标系内,用“五点作图法”画出函数f(x)在一个周期内的图象.
查看答案
给出下列四个命题:
①∃x∈R,使得manfen5.com 满分网sinx+manfen5.com 满分网cosx>1;
②设f(x)=sin(2x+manfen5.com 满分网),则∀x∈(-manfen5.com 满分网manfen5.com 满分网),必有f(x)<f(x+0.1);
③设f(x)=cos(x+manfen5.com 满分网),则函数y=f(x+manfen5.com 满分网)是奇函数;
④设f(2x)=2sin2x,则f(x+manfen5.com 满分网)=2sin(2x+manfen5.com 满分网).
其中正确的命题的序号为    (把所有满足要求的命题序号都填上). 查看答案
曲线y=x3+x-2的一条切线平行于直线y=4x-1,则切点P的坐标为     查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.