满分5 > 高中数学试题 >

如图,建立平面直角坐标系xOy,x轴在地平面上,y轴垂直于地平面,单位长度为1千...

manfen5.com 满分网如图,建立平面直角坐标系xOy,x轴在地平面上,y轴垂直于地平面,单位长度为1千米.某炮位于坐标原点.已知炮弹发射后的轨迹在方程y=kx-manfen5.com 满分网(1+k2)x2(k>0)表示的曲线上,其中k与发射方向有关.炮的射程是指炮弹落地点的横坐标.
(1)求炮的最大射程;
(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标a不超过多少时,炮弹可以击中它?请说明理由.
(1)求炮的最大射程即求  y=kx-(1+k2)x2(k>0)与x轴的横坐标,求出后应用基本不等式求解. (2)求炮弹击中目标时的横坐标的最大值,由一元二次方程根的判别式求解. 【解析】 (1)在 y=kx-(1+k2)x2(k>0)中,令y=0,得 kx-(1+k2)x2=0.                   由实际意义和题设条件知x>0,k>0. ∴,当且仅当k=1时取等号. ∴炮的最大射程是10千米. (2)∵a>0,∴炮弹可以击中目标等价于存在 k>0,使ka-(1+k2)a2=3.2成立, 即关于 的方程a2k2-20ak+a2+64=0有正根. 由△=400a2-4a2(a2+64)≥0得a≤6. 此时,k=>0(不考虑另一根). ∴当a不超过6千米时,炮弹可以击中目标.
复制答案
考点分析:
相关试题推荐
如图,在直三棱柱ABC-A1B1C1中,A1B1=A1C1,D,E分别是棱BC,CC1上的点(点D 不同于点C),且AD⊥DE,F为B1C1的中点.求证:
(1)平面ADE⊥平面BCC1B1
(2)直线A1F∥平面ADE.

manfen5.com 满分网 查看答案
在△ABC中,已知manfen5.com 满分网
(1)求证:tanB=3tanA;
(2)若cosC=manfen5.com 满分网,求A的值.
查看答案
已知正数a,b,c满足:5c-3a≤b≤4c-a,clnb≥a+clnc,则manfen5.com 满分网的取值范围是    查看答案
已知函数f(x)=x2+ax+b(a,b∈R)的值域为[0,+∞),若关于x的不等式f(x)<c的解集为(m,m+6),则实数c的值为    查看答案
在平面直角坐标系xOy中,圆C的方程为x2+y2-8x+15=0,若直线y=kx-2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k的最大值是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.