由题意可求得≤≤2,而5×-3≤≤4×-1,于是可得≤7;由c ln b≥a+c ln c可得0<a≤cln,从而≥,设函数f(x)=(x>1),利用其导数可求得f(x)的极小值,也就是的最小值,于是问题解决.
【解析】
∵4c-a≥b>0
∴>,
∵5c-3a≤4c-a,
∴≤2.
从而 ≤2×4-1=7,特别当=7时,第二个不等式成立.等号成立当且仅当a:b:c=1:7:2.
又clnb≥a+clnc,
∴0<a≤cln,
从而≥,设函数f(x)=(x>1),
∵f′(x)=,当0<x<e时,f′(x)<0,当x>e时,f′(x)>0,当x=e时,f′(x)=0,
∴当x=e时,f(x)取到极小值,也是最小值.
∴f(x)min=f(e)==e.
等号当且仅当=e,=e成立.代入第一个不等式知:2≤=e≤3,不等式成立,从而e可以取得.等号成立当且仅当a:b:c=1:e:1.
从而的取值范围是[e,7]双闭区间.