下列各数可能是一个三角形的边长的是( ).
A. 1,3,5 B. 3,4,5
C. 2,2,4
D.
下列为轴对称图形的是( ).

如图,已知直线
与x轴、y轴分别交于点A、B,线段AB为直角边在第一象限内作等腰Rt△ABC,∠BAC=90°.

(1)求△AOB的面积;
(2)求点C坐标;
(3)点P是x轴上的一个动点,设P(x,0)
①请用x的代数式表示PB2、PC2;
②是否存在这样的点P,使得|PC-PB|的值最大?如果不存在,请说明理由;
如果存在,请求出点P的坐标.
“十一黄金周”的某一天,小刚全家上午8时自驾小汽车从家里出发,到距离180千米的某著名旅游景点游玩,该小汽车离家的路程S(千米)与时间t (时)的关系可以用右图的折线表示。根据图象提供的有关信息,解答下列问题:

(1)小刚全家在旅游景点游玩了多少小时?
(2)求出整个旅程中S(千米)与时间t (时)的函数关系式,并求出相应自变量t的取值范围。
(3)小刚全家在什么时候离家120㎞?什么时候到家?
某软件公司开发出一种图书管理软件,前期投入的各种费用总共50000元,之后每售出一套软件,软件公司还需支付安装调试费用200元,设销售套数x(套)。
(1)试写出总费用y(元)与销售套数x(套)之间的函数关系式.
(2)该公司计划以400元每套的价格进行销售,并且公司仍要负责安装调试,试问:软件公司售出多少套软件时,收入超出总费用?
如图,在△ABC中,点D、E在边BC上,且AB=AC,AD=AE,请说明BE=CD的理由.

