已知直角三角形的两直角边的长恰好是方程x2-5x+6=0的两根,则此直角三角形的斜边长为( ) A. ![]() B.3 C. ![]() D.3 |
|
夏天,一杯开水放在桌子上,杯中水的温度T(℃)随时间t变化的关系的大致图象是( ) A. ![]() B. ![]() C. ![]() D. ![]() |
|
A车站到B车站之间还有3个车站,那么从A车站到B车站方向发出的车辆,一共有多少种不同的车票( ) A.8 B.9 C.10 D.11 |
|
下列事件中是必然事件的是( ) A.早晨的太阳一定从东方升起 B.中秋节的晚上一定能看到月亮 C.打开电视机,正在播少儿节目 D.小红今年14岁,她一定是初中学生 |
|
电影院呈阶梯或下坡形状的主要原因是( ) A.为了美观 B.减小盲区 C.增大盲区 D.盲区不变 |
|
如图,四边形OABC为正方形,点A在x轴上,点C在y轴上,点B(8,8),点P在边OC上,点M在边AB上.把四边形OAMP沿PM对折,PM为折痕,使点O落在BC边上的点Q处.动点E从点O出发,沿OA边以每秒1个单位长度的速度向终点A运动,运动时间为t,同时动点F从点O出发,沿OC边以相同的速度向终点C运动,当点E到达点A时,E、F同时停止运动. (1)若点Q为线段BC边中点,直接写出点P、点M的坐标; (2)在(1)的条件下,设△OEF与四边形OAMP重叠面积为S,求S与t的函数关系式; (3)在(1)的条件下,在正方形OABC边上,是否存在点H,使△PMH为等腰三角形,若存在,求出点H的坐标,若不存在,请说明理由; (4)若点Q为线段BC上任一点(不与点B、C重合),△BNQ的周长是否发生变化,若不发生变化,求出其值,若发生变化,请说明理由. ![]() |
|
一座建于若干年前的水库大坝的横断面如图所示,其中背水面的整个坡面是长为90米、宽为5米的矩形.现需将其整修并进行美化,方案如下:①将背水坡AB的坡度由1:0.75改为1:![]() (1)求整修后背水坡面的面积; (2)如果栽花的成本是每平方米25元,种草的成本是每平方米20元,那么种植花草至少需要多少元? ![]() |
|
重庆市的重大惠民工程--公租房建设已陆续竣工,计划10年内解决低收入人群的住房问题,前6年,每年竣工投入使用的公租房面积y(单位:百万平方米),与时间x的关系是![]() ![]()
(2)求政府在第几年投入的公租房收取的租金最多,最多为多少百万元; (3)若第6年竣工投入使用的公租房可解决20万人的住房问题,政府计划在第10年投入的公租房总面积不变的情况下,要让人均住房面积比第6年人均住房面积提高a%,这样可解决住房的人数将比第6年减少1.35a%,求a的值. (参考数据: ![]() ![]() ![]() |
|||||||||||||||
如图,已知反比例函数![]() (1)试确定这两个函数的表达式; (2)求出这两个函数图象的另一个交点B的坐标,并根据图象写出使反比例函数的值大于一次函数的值的x的取值范围. ![]() |
|
直角梯形ABCD中,AB∥CD,∠C=90°,AB=BC,M为BC边上一点. (1)若∠DMC=45°,求证:AD=AM. (2)若∠DAM=45°,AB=7,CD=4,求BM的值. ![]() |
|