如图,正方形ABCD的边长为12,划分成12×12个小正方形格.将边长为n(n为整数,且2≤n≤11)的黑白两色正方形纸片按图中的方式黑白相间地摆放,第一张n×n的纸片正好盖住正方形ABCD左上角的n×n个小正方形格,第二张纸片盖住第一张纸片的部分恰好为(n-1)×(n-1)的正方形.如此摆放下去,最后直到纸片盖住正方形ABCD的右下角为止. 请你认真观察思考后回答下列问题: (1)由于正方形纸片边长n的取值不同,完成摆放时所使用正方形纸片的张数也不同,请填写下表:
①当n=2时,求S1:S2的值; ②是否存在使得S1=S2的n值,若存在,请求出这样的n值;若不存在,请说明理由. ![]() |
|||||||||||||
下图是按一定规律排列的方程组集合和它解的集合的对应关系图,若方程组集合中的方程组自左至右依次记作方程组1、方程组2、方程组3、…方程组n.![]() (1)将方程组1的解填入图中; (2)请依据方程组和它的解变化的规律,将方程组n和它的解直接填入集合图中; (3)若方程组 ![]() ![]() |
|
![]() (1)画出△ABC向下平移3个单位后的△A1B1C1; (2)画出△ABC绕点O顺时针旋转90°后的△A2B2C2,并求点A旋转到A2所经过的路线长. |
|
如图,河旁有一座小山,从山顶A处测得河对岸点C的俯角为30°,测得岸边点D的俯角为45°,又知河宽CD为50米.现需从山顶A到河对岸点C拉一条笔直的缆绳AC,求缆绳AC的长(答案可带根号).![]() |
|
如图,在△ABC中,∠ACB=90°,D是AB的中点,以DC为直径的⊙O交△ABC的边于G,F,E点. 求证:(1)F是BC的中点; (2)∠A=∠GEF. ![]() |
|
端午节吃粽子是中华民族的传统习俗,五月初五早上,奶奶为小明准备了四只粽子:一只肉馅,一只香肠馅,两只红枣馅,四只粽子除内部馅料不同外其他均一切相同.小明喜欢吃红枣馅的粽子. (1)请你用树状图为小明预测一下吃两只粽子刚好都是红枣馅的概率; (2)在吃粽子之前,小明准备用一个均匀的正四面体骰子(如图所示)进行吃粽子的模拟试验,规定:掷得点数1向上代表肉馅,点数2向上代表香肠馅,点数3,4向上代表红枣馅,连续抛掷这个骰子两次表示随机吃两只粽子,从而估计吃两只粽子刚好都是红枣馅的概率.你认为这样模拟正确吗?试说明理由. ![]() |
|
![]() (1)仔细观察图中数据,试求出y与x之间的函数表达式; (2)当摄氏温度为零下15℃时,求华氏温度为多少? |
|
如图,已知AB∥CD,直线EF分别交AB、CD于点E、F,EG平分∠BEF交CD于点G,如果∠1=50°,那么∠2的度数是 度.![]() |
|
解方程:x2-4x-12=0. |
|
观察下列各式: (x-1)(x+1)=x2-1 (x-1)(x2+x+1)=x3-1 (x-1)(x3+x2+x+1)=x4-1, 根据前面各式的规律可得(x-1)(xn+xn-1+…+x+1)= (其中n为正整数). |
|