如图,已知正方形ABCD的边长是2,E是AB的中点,延长BC到点F使CF=AE. (1)若把△ADE绕点D旋转一定的角度时,能否与△CDF重合?请说明理由. (2)现把△DCF向左平移,使DC与AB重合,得△ABH,AH交ED于点G.求证:AH⊥ED,并求AG的长.
|
|
铭润超市用5000元购进一批新品种的苹果进行试销,由于销售状况良好,超市又调拨11 000元资金购进该品种苹果,但这次的进货价比试销时每千克多了0.5元,购进苹果数量是试销时的2倍. (1)试销时该品种苹果的进货价是每千克多少元? (2)如果超市将该品种苹果按每千克7元的定价出售,当大部分苹果售出后,余下的400千克按定价的七折(“七折”即定价的70%)售完,那么超市在这两次苹果销售中共盈利多少元?
|
|
一个不透明的口袋里装有红、白、黄三种颜色的乒乓球(除颜色外其余都相同),其中有白球2个,黄球1个,若从中任意摸出一个球,这个球是白球的概率为0.5. (1)求口袋中红球的个数; (2)若从中摸出一个球后不放回,再摸出一个球,通过画树状图或列表分析,求两次均摸到白球的概率.
|
|
(1)如图1,A,E,B,D在同一直线上,在△ABC与△DEF中,AB=DE,AC=DF,AC∥DF.求证:∠C=∠F. (2)如图2,在菱形ABCD中,∠A=60°,AB=4,O为对角线BD的中点,过O点作OE⊥AB,垂足为E.求线段BE的长.

|
|
(1)化简:(x+1)2+2(1-x)-x2. (2)解不等式 ,并把解集在数轴上表示出来.

|
|
如图,已知⊙P的半径为2,圆心P在抛物线y= -1上运动,当⊙P与x轴相切时,圆心P的坐标为 .
|
|
已知:如图,正方形ABCD中,对角线AC和BD相交于点O.E、F分别是边AB、BC上的点,若AE=4cm,CF=3cm,且OE⊥OF,则EF的长为 cm.
|
|
反比例函数 (k>0)的图象与经过原点的直线l相交于A、B两点,已知A点的坐标为(2,1),那么B点的坐标为 .
|
|
在综合实践课上,六名同学做的作品的数量(单位:件)分别是:5,7,3,x,6,4;若这组数据的平均数是5,则这组数据的中位数是 件.
|
|
如图,O是直线l上一点,∠AOB=100°,则∠1+∠2= 度.
|
|