如图,两同心圆的圆心为O,大圆的弦AB切小圆于P,两圆的半径分别为2和1,则弦长AB= ;若用阴影部分围成一个圆锥,则该圆锥的底面半径为 .(结果保留根号).![]() |
|
先化简![]() ![]() ![]() ![]() ![]() |
|
如图,直线l1∥l2且l1,l2被直线l3所截,∠1=∠2=35°,∠P=90°,则∠3= 度.![]() |
|
在平面直角坐标系中,线段AB的端点A的坐标为(-3,2),将其先向右平移4个单位,再向下平移3个单位,得到线段A′B′,则点A对应点A′的坐标为 . | |
上海世博会永久地标建筑世博获“全球生态建筑奖”,该建筑占地面积约为104 500平方米,这个数用科学记数法表示为 平方米.(结果保留三位有效数字). | |
函数![]() |
|
分解因式:x2+2xy-2x+y2-2y+1= . | |
-0.125的倒数是 ,立方根是 . | |
如图,已知抛物线y=ax2+bx-3与x轴交于A、B两点,与y轴交于C点,经过A、B、C三点的圆的圆心M(1,m)恰好在此抛物线的对称轴上,⊙M的半径为![]() (1)求m的值及抛物线的解析式; (2)设∠DBC=α,∠CBE=β,求sin(α-β)的值; (3)探究坐标轴上是否存在点P,使得以P、A、C为顶点的三角形与△BCE相似?若存在,请指出点P的位置,并直接写出点P的坐标;若不存在,请说明理由. ![]() |
|
在平面直角坐标系中,直线y=-![]() (1)直接写出B、C两点的坐标; (2)直线y=x与直线y=- ![]() ①若点P在线段OA上运动时(如图1),过P、Q分别作x轴的垂线,垂足分别为N、M,设矩形PQMN的面积为S,写出S和t之间的函数关系式,并求出S的最大值. ②若点P经过点A后继续按原方向、原速度运动,当运动时间t为何值时,过P、Q、O三点的圆与x轴相切? ![]() |
|