已知x2+3x-1=0,则2x2+6x+2008= . | |
如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE. (1)求证:CE=CF; (2)在图1中,若G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么? (3)运用(1)(2)解答中所积累的经验和知识,完成下题: 如图2,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC=12,E是AB上一点,且∠DCE=45°,BE=4,求DE的长. ![]() ![]() |
|
如图,反比例函数图象在第一象限的分支上有一点C(1,3),过点C的直线y=kx+b〔k<0〕与x轴交于点A. (1)求反比例函数的解析式; (2)当直线与反比例函数的图象在第一象限内的另一交点的横坐标为3时,求△COD的面积. ![]() |
|
如图,AC是某市环城路的一段,AE、BF、CD都是南北方向的街道,其与环城路AC的交叉路口分别是A、B、C经测量,花卉世界D位于点A的北偏东45°方向,点B的北偏东30°方向上,AB=2km,∠DAC=15°. (1)求∠ADB的大小; (2)求B、D之间的距离; (3)求C、D之间的距离. ![]() |
|
如图,已知平行四边形ABCD中,F、G是AB边上的两个点,且FC平分∠BCD,GD平分∠ADC,FC与GD相交于点E,求证:AF=GB.![]() |
|
(1)计算:2cos30°-![]() ![]() (2)解方程:2x2-5x-7=0. |
|
如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给他做了一个简易的秋千,拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为 米.![]() |
|
如图,如果从半径为9cm的圆形纸片剪去![]() ![]() |
|
如图四边形ABCD内接于⊙O,AB为直径,PD切⊙O于D,与BA延长线交于P点,已知∠BCD=130°,则∠ADP= .![]() |
|
初三(1)班研究学习小组为了测量学校旗杆的高度(如图),他们离旗杆底部E点30米的D处,用测角仪测得旗杆的仰角为30°,已知测角仪器高AD=1.4米,则旗杆BE的高为 米(精确到0.1米).![]() |
|