![]() |
|
如图,在平面直角坐标系xoy中,点A在y轴上坐标为(0,3),点B在x轴上坐标为(10,0),BC⊥x轴,直线AC交x轴于M,tan∠ACB=2. (1)求直线AC的解析式; (2)点P在线段OB上,设OP=x,△APC的面积为S.请写出S关于x的函数关系式及自变量x的取值范围; (3)探索:在线段OB上是否存在一点P,使得△APC是直角三角形?若存在,求出x的值,若不存在,请说明理由; (4)当x=4时,设顶点为P的抛物线与y轴交于D,且△PAD是等腰三角形,求该抛物线的解析式.(直接写出结果) ![]() |
|
某企业信息部进行市场调研发现: 信息一:如果单独投资A种产品,所获利润yA(万元)与投资金额x(万元)之间存在某种关系的部分对应值如下表:
(1)求出yB与x的函数关系式; (2)从所学过的一次函数、二次函数、反比例函数中确定哪种函数能表示yA与x之间的关系,并求出yA与x的函数关系式; (3)如果企业同时对A、B两种产品共投资15万元,请设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少? |
|||||||||||||
如图1,在△ABC中,∠ACB=90°,∠CAB=30°,△ABD是等边三角形,E是AB的中点,连接CE并延长交AD于F. (1)求证:①△AEF≌△BEC;②四边形BCFD是平行四边形; (2)如图2,将四边形ACBD折叠,使D与C重合,HK为折痕,求sin∠ACH的值. ![]() |
|
在中央电视台第2套《购物街》栏目中,有一个精彩刺激的游戏--幸运大转盘,其规则如下: ①游戏工具是一个可绕轴心自由转动的圆形转盘,转盘按圆心角均匀划分为20等分,并在其边缘标记5、10、15、…、100共20个5的整数倍数,游戏时,选手可旋转转盘,待转盘停止时,指针所指的数即为本次游戏的得分; ②每个选手在旋转一次转盘后可视得分情况选择是否再旋转转盘一次,若只旋转一次,则以该次得分为本轮游戏的得分,若旋转两次则以两次得分之和为本轮游戏的得分; ③若某选手游戏得分超过100分,则称为“爆掉”,该选手本轮游戏裁定为“输”,在得分不超过100分的情况下,分数高者裁定为“赢”; ④遇到相同得分的情况,相同得分的选手重新游戏,直到分出输赢. 现有甲、乙两位选手进行游戏,请解答以下问题: (1)甲已旋转转盘一次,得分65分,他选择再旋转一次,求他本轮游戏不被“爆掉”的概率. (2)若甲一轮游戏最终得分为90分,乙第一次旋转转盘得分为85分,则乙还有可能赢吗赢的概率是多少 (3)若甲、乙两人交替进行游戏,现各旋转一次后甲得85分,乙得65分,你认为甲是否应选择旋转第二次说明你的理由. |
|
(1)如图1,已知∠AOB,OA=OB,点E在OB边上,四边形AEBF是平行四边形,请你只用无刻度的直尺在图中画出∠AOB的平分线;(保留作图痕迹,不要求写作法) (2)如图2,在10×10的正方形网格中,点A(0,0)、B(5,0)、C(3,6)、D(-1,3), ①依次连接A、B、C、D四点得到四边形ABCD,四边形ABCD的形状是______; ②在x轴上找一点P,使得△PCD的周长最短(直接画出图形,不要求写作法),此时,点P的坐标为______,最短周长为______ |
|
![]() 60°(如图),试确定生命所在点C的深度.(结果精确到0.1米,参考数据: ![]() ![]() |
|
(1)计算:|-![]() ![]() (2)先化简分式( ![]() ![]() ![]() ![]() |
|
如图,点P在y轴上,⊙P交x轴于A,B两点,连接BP并延长交⊙P于C,过点C的直线y=2x+b交x轴于D,且⊙P的半径为![]() ![]() ![]() |
|
如图,△ABC中∠A=30°,E是AC边上的点,先将△ABE沿着BE翻折,翻折后△ABE的AB边交AC于点D,又将△BCD沿着BD翻折,C点恰好落在BE上,此时∠CDB=82°,则原三角形的∠B= 度.![]() |
|