如图1,在△ABC中,AB=BC=5,AC=6.△ECD是△ABC沿BC方向平移得到的,连接AE.AC和BE相交于点O. (1)判断四边形ABCE是怎样的四边形,说明理由; (2)如图2,P是线段BC上一动点(图2),(不与点B、C重合),连接PO并延长交线段AB于点Q,QR⊥BD,垂足为点R. ①四边形PQED的面积是否随点P的运动而发生变化?若变化,请说明理由;若不变,求出四边形PQED的面积; ②当线段BP的长为何值时,△PQR与△BOC相似. ![]() |
|
已知:如图所示的一张矩形纸片ABCD(AD>AB),将纸片折叠一次,使点A与C重合,再展开,折痕EF交AD边于E,交BC边于F,分别连接AF和CE. (1)求证:四边形AFCE是菱形; (2)若AE=10cm,△ABF的面积为24cm2,求△ABF的周长; (3)在线段AC上是否存在一点P,使得2AE2=AC•AP?若存在,请说明点P的位置,并予以证明;若不存在,请说明理由. ![]() |
|
如图,在平行四边形ABCD中,AE⊥BC于E,AF⊥CD于F,BD与AE、AF分别相交于G、H. (1)求证:△ABE∽△ADF; (2)若AG=AH,求证:四边形ABCD是菱形. ![]() |
|
在直角边分别为5cm和12cm的直角三角形中作菱形,使菱形的一个内角恰好是三角形的一个角,其余顶点都在三角形的边上,求所作菱形的边长. |
|
如图,四边形ABCD是菱形,点G是BC延长线上一点,连接AG,分别交BD、CD于点E、F,连接CE. (1)求证:∠DAE=∠DCE; (2)当AE=2EF时,判断FG与EF有何等量关系?并证明你的结论. ![]() |
|
如图,在四边形ABCD中,∠A=90°,∠ABC与∠ADC互补. (1)求∠C的度数; (2)若BC>CD且AB=AD,请在图上画出一条线段,把四边形ABCD分成两部分,使得这两部分能够重新拼成一个正方形,并说明理由; (3)若CD=6,BC=8,S四边形ABCD=49,求AB的值. ![]() |
|
在Rt△ABC中,∠ACB=90°,中线AE与中线CD交于点O,AB=6. (1)求证:AO:OE=2:1; (2)求OC的长. ![]() |
|
如图,△ABC中,D、E分别是边BC、AB的中点,AD、CE相交于G. 求证: ![]() ![]() |
|
如图1,在△ABC和△PQD中,AC=kBC,DP=kDQ,∠C=∠PDQ,D、E分别是AB、AC的中点,点P在直线BC上,连接EQ交PC于点H. 猜想线段EH与AC的数量关系,并证明你的猜想.说明:如果你经历反复探索,没有解决问题,可以从下面①、②中选取一个作为已知条件,完成你的证明. 注意:选取①完成证明得10分;选取②完成证明得6分. ①AC=BC,DP=DQ,∠C=∠PDQ(如图2); ②在①的条件下且点P与点B重合(如图3 ![]() |
|
已知△ABC,延长BC到D,使CD=BC.取AB的中点F,连接FD交AC于点E. (1)求 ![]() (2)若AB=a,FB=EC,求AC的长. ![]() |
|