在一次数学兴趣小组活动中,李燕和刘凯两位同学设计了如图所示的两个转盘做游戏(每个转盘被分成面积相等的几个扇形,并在每个扇形区域内标上数字).游戏规则如下:两人分别同时转动甲、乙转盘,转盘停止后,若指针所指区域内两数和小于12,则李燕获胜;若指针所指区域内两数和等于12,则为平局;若指针所指区域内两数和大于12,则刘凯获胜(若指针停在等分线上,重转一次,直到指针指向某一份内为止). (1)请用列表或画树状图的方法表示出上述游戏中两数和的所有可能的结果; (2)分别求出李燕和刘凯获胜的概率.
|
|
在一个不透明的袋子中有一个黑球 (1)小丽第一次从袋子中摸出一个球不放回,第二次又从袋子中摸出一个球,则小丽两次都摸到白球的概率是多少? (2)小强第一次从袋子中摸出一个球,摸到黑球不放回,摸到白球放回;第二次又从袋子中摸出一个球,则小强两次都摸到白球的概率是多少?
|
|
在四张背面完全相同的纸牌A、B、C、D,其中正面分别画有四个不同的几何图形(如图),小华将这4张纸牌背面朝上洗匀后摸出一张,放回洗匀后再摸一张. (1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌可用A、B、C、D表示); (2)求摸出两张纸牌牌面上所画几何图形,既是轴对称图形又是中心对称图形的概率.
|
|
在一个不透明的口袋里装有只有颜色不同的黑、白两种球共20个,某学习小组做摸球实验,每次摸出一个球再把它放回袋中,不断重复,下表是一次摸球实验的一组统计数据.
(1)请估计:当n很大时,摸到白球的频率将会接近多少? (2)试估算口袋里黑、白两种颜色的球各有多少个?
|
||||||||||||||||||||||
甲口袋中装有3个相同的小球,它们分别写有数值﹣1,1,5;乙口袋中装有3个相同的小球,它们分别写有数值﹣4,2,3.现从甲口袋中随机取一球,记它上面的数值为x,再从乙口袋中随机取一球,记它上面的数值为y.设点A的坐标为(x,y),请用树形图或列表法,求点A落在第一象限的概率.
|
|
甲、乙两人玩猜数字游戏,游戏规则如下:有四个数字0、1、2、3,先由甲心中任选一个数字,记为m,再由乙猜甲刚才所选的数字,记为n。若m、n满足
|
|
从数﹣2,﹣
|
|
同时抛掷两枚质地均匀的骰子,则事件“两枚骰子的点数和小于8且为偶数”的概率是 .
|
|
小颖将一枚质地均匀的硬币连续掷了三次,你认为三次都是正面朝上的概率是____.
|
|
一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同,随机摸出两个小球,摸出两个颜色相同的小球的概率为____.
|
|