我市今年参加中考人数约为42000人,将42000用科学记数法表示为( ) A. 4.2×104 B. 0.42×105 C. 4.2×103 D. 42×103
|
|
下列四个图形中,即是轴对称图形又是中心对称图形的有( ). A.1个 B.2个 C.3个 D.4个
|
|
a,b互为相反数,下列各数中,互为相反数的一组为( ) A. a2与b2 B. a3与b5 C. a2n与b2n (n为正整数) D. a2n+1与b2n+1(n为正整数)
|
|
抛物线y=ax2+bx+3(a≠0)经过点A(﹣1,0),B( (1)求这条抛物线的表达式; (2)求∠ACB的度数; (3)设点D是所求抛物线第一象限上一点,且在对称轴的右侧,点E在线段AC上,且DE⊥AC,当△DCE与△AOC相似时,求点D的坐标.
|
|
已知AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O的切线交AB的延长线于F,切点为G,连接AG交CD于K. (1)如图1,求证:KE=GE; (2)如图2,连接CABG,若∠FGB= (3)如图3,在(2)的条件下,连接CG交AB于点N,若sinE=
|
|
如图,在Rt△ABC中,∠C=90°,翻折∠C,使点C落在斜边AB上某一点D处,折痕为EF(点E、F分别在边AC、BC上) (1)若△CEF与△ABC相似,且当AC=BC=2时,求AD的长; (2)若△CEF与△ABC相似,且当AC=3,BC=4时,求AD的长; (2)当点D是AB的中点时,△CEF与△ABC相似吗?请说明理由.
|
|
甲、乙两公司各为“希望工程”捐款2000元.已知乙公司比甲公司人均多捐20元,且乙公司的人数是甲公司人数的
|
|
在学校开展的数学活动课上,小明和小刚制作了一个正三楼锥(质量均匀,四个面完全相同),并在各个面上分别标记数字1,2,3,4,游戏规则如下每人投掷三棱锥两次,并记录底面的数字,如果两次所掷数字的和为单数,那么算小明赢,如果两欢所掷数字的和为偶数,那么算小明赢; (1)请用列表或者面树状围的方法表示上述游戏中的所有可能结果. (2)请分别隶出小明和小刚能赢的概率,并判新游戏的公平性.
|
|
如图,点A(a,a+5)和点B(6,a+1)都在双曲线y= (1)求k的值; (2)求△AOB的面积.
|
|
先化简,再求值:
|
|