如图,A、B、C是⊙O上的三点,若∠A+∠C=75°,则∠AOC的度数为( ) A. 150° B. 140° C. 130° D. 120°
|
|
计算1+2+22+23+…+22010的结果是( ) A. 22011﹣1 B. 22011+1 C.
|
|
下列说法:①要了解一批灯泡的使用寿命,应采用普查的方式;②若一个游戏的中奖率是1%,则做100次这样的游戏一定会中奖;③甲、乙两组数据的样本容量与平均数分别相同若方差S甲2=0.1,S乙2=0.2,则甲组数据比乙组数据稳定;④“掷一枚硬币,正面朝上”是必然事件.正确的说法有( )个. A. 4 B. 3 C. 2 D. 1
|
|
在下列图案中,既是轴对称又是中心对称图形的是( ) A.
|
|
在实数﹣2,1,0,﹣3中,最小的数是( ) A. ﹣2 B. 1 C. 0 D. ﹣3
|
|
阅读下列材料,完成任务: 自相似图形 定义:若某个图形可分割为若干个都与它相似的图形,则称这个图形是自相似图形.例如:正方形ABCD中,点E、F、G、H分别是AB、BC、CD、DA边的中点,连接EG,HF交于点O,易知分割成的四个四边形AEOH、EBFO、OFCG、HOGD均为正方形,且与原正方形相似,故正方形是自相似图形. 任务: (1)图1中正方形ABCD分割成的四个小正方形中,每个正方形与原正方形的相似比为 ; (2)如图2,已知△ABC中,∠ACB=90°,AC=4,BC=3,小明发现△ABC也是“自相似图形”,他的思路是:过点C作CD⊥AB于点D,则CD将△ABC分割成2个与它自己相似的小直角三角形.已知△ACD∽△ABC,则△ACD与△ABC的相似比为 ; (3)现有一个矩形ABCD是自相似图形,其中长AD=a,宽AB=b(a>b). 请从下列A、B两题中任选一条作答:我选择 题. A:①如图3﹣1,若将矩形ABCD纵向分割成两个全等矩形,且与原矩形都相似,则a= (用含b的式子表示); ②如图3﹣2若将矩形ABCD纵向分割成n个全等矩形,且与原矩形都相似,则a= (用含n,b的式子表示); B:①如图4﹣1,若将矩形ABCD先纵向分割出2个全等矩形,再将剩余的部分横向分割成3个全等矩形,且分割得到的矩形与原矩形都相似,则a= (用含b的式子表示); ②如图4﹣2,若将矩形ABCD先纵向分割出m个全等矩形,再将剩余的部分横向分割成n个全等矩形,且分割得到的矩形与原矩形都相似,则a= (用含m,n,b的式子表示).
|
|
如图,抛物线y=ax2+ 其中A(-1,0),与y轴交于点C(0,2). (1)求抛物线的表达式及点B坐标; (2)点E是线段BC上的任意一点(点E与B、C不重合),过点E作平行于y轴的直线交抛物线于点F,交x轴于点G. ①设点E的横坐标为m,用含有m的代数式表示线段EF的长; ②线段EF长的最大值是 .
|
|
如图,在直角三角形ABC中,∠ACB=90°,CD是AB边上的高,AB=10cm,BC=8cm,AC=6cm,求: (1)CD的长; (2)△ABC的角平分线AE交CD于点F,交BC于E点,求证:∠CFE=∠CEF.
|
|
对于实数a,b,我们可以用min{a,b}表示a,b两数中较小的数,例如min{3,﹣1}=﹣1,min{2,2}=2.类似地,若函数y1、y2都是x的函数,则y=min{y1,y2}表示函数y1和y2的“取小函数”. (1)设y1=x,y2= (2)请在图1中用粗实线描出函数y=min{(x﹣2)2,(x+2)2}的图象,并写出该图象的三条不同性质: ① ;② ;③ ; (3)函数y=min{(x﹣4)2,(x+2)2}的图象关于 对称.
|
|
已知:如图,在△ABC中,AB=AC=5,BC=8,D,E分别为BC,AB边上一点,∠ADE=∠C. (1)求证:△BDE∽△CAD; (2)若CD=2,求BE的长.
|
|