已知,点 (1)判断顶点 (2)如图1,若二次函数图象也经过点 (3)如图2,点
|
|
如图,在△ABC中,∠ACB=90°,∠ABC=30°,△CDE是等边三角形,点D在边AB上. (1)如图1,当点E在边BC上时,求证DE=EB; (2)如图2,当点E在△ABC内部时,猜想ED和EB数量关系,并加以证明; (3)如图3,当点E在△ABC外部时,EH⊥AB于点H,过点E作GE∥AB,交线段AC的延长线于点G,AG=5CG,BH=3.求CG的长.
|
|
在某市实施城中村改造的过程中,“旺鑫”拆迁工程队承包了一项10000 m2的拆迁工程.由于准备工作充分,实际拆迁效率比原计划提高了25%,提前2天完成了任务,请解答下列问题: (1)求“旺鑫”拆迁工程队现在平均每天拆迁多少平方米; (2)为了尽量减少拆迁给市民带来的不便,在拆迁工作进行了2天后,“旺鑫”拆迁工程队的领导决定加快拆迁工作,将余下的拆迁任务在5天内完成,那么“旺鑫”拆迁工程队平均每天至少再多拆迁多少平方米?
|
|
如图,已知正比例函数y=2x与反比例函数y= (1)求k的值; (2)根据图象直接写出正比例函数值小于反比例函数值时x的取值范围; (3)过原点O的另一条直线l交双曲线y=
|
|
如图,热气球探测器显示,从热气球A处看一栋楼顶部B处的仰角为30°,看这栋楼底部C处的俯角为60°,热气球与楼的水平距离AD为100米,试求这栋楼的高度BC.
|
|
如图,点P在⊙O的直径AB的延长线上,PC为⊙O的切线,点C为切点,连接AC,过点A作PC的垂线,点D为垂足,AD交⊙O于点E. (1)如图1,求证:∠DAC=∠PAC; (2)如图2,点F(与点C位于直径AB两侧)在⊙O上, (3)在(2)的条件下,如图3,若AE=
|
|
某校九年级开展征文活动,征文主题只能从“爱国”“敬业”“诚信”“友善”四个主题选择一个,九年级每名学生按要求都上交了一份征文,学校为了解选择各种征文主题的学生人数,随机抽取了部分征文进行了调查,根据调查结果绘制成如下两幅不完整的统计图. (1)求共抽取了多少名学生的征文; (2)将上面的条形统计图补充完整; (3)在扇形统计图中,选择“爱国”主题所对应的圆心角是多少; (4)如果该校九年级共有1200名学生,请估计选择以“友善”为主题的九年级学生有多少名.
|
|
先化简,再求代数式(
|
|
等腰梯形ABCD中,AD∥BC,AB=CD,BD为对角线,将△ABD沿BD对折,A点刚好落在BC边的Aˊ处,∠C=60°,BC=12,则等腰梯形ABCD的周长为=_____.
|
|
关于
|
|