(2010•镇江)有200名待业人员参加某企业甲、乙、丙三个部门的招聘,到各部门报名的人数百分比见图1,该企业各部门的录取率见图表2.(部门录取率=![]() (1)到乙部门报名的人数有______人,乙部门的录取人数是______人,该企业的录取率为______; (2)如果到甲部门报名的人员中有一些人员改到丙部门报名,在保持各部门录取率不变的情况下,该企业的录取率将恰好增加15%,问有多少人从甲部门改到丙部门报名? ![]() |
|
(2010•镇江)已知二次函数y=x2+2x+m的图象C1与x轴有且只有一个公共点. (1)求C1的顶点坐标; (2)将C1向下平移若干个单位后,得抛物线C2,如果C2与x轴的一个交点为A(-3,0),求C2的函数关系式,并求C2与x轴的另一个交点坐标; (3)若P(n,y1),Q(2,y2)是C1上的两点,且y1>y2,求实数n的取值范围. |
|
(2010•镇江)在直角坐标系xOy中,直线l过(1,3)和(3,1)两点,且与x轴,y轴分别交于A,B两点. (1)求直线l的函数关系式; (2)求△AOB的面积. ![]() |
|
(2010•镇江)在如图所示的方格纸中,△ABC的顶点都在小正方形的顶点上,以小正方形互相垂直的两边所在直线建立直角坐标系. (1)作出△ABC关于y轴对称的△A1B1C1,其中A,B,C分别和A1,B1,C1对应; (2)平移△ABC,使得A点在x轴上,B点在y轴上,平移后的三角形记为△A2B2C2,作出平移后的△A2B2C2,其中A,B,C分别和A2,B2,C2对应; (3)填空:在(2)中,设原△ABC的外心为M,△A2B2C2的外心为M,则M与M2之间的距离为______ ![]() |
|
(2010•镇江)如图,在△ABC和△ADE中,点E在BC边上,∠BAC=∠DAE,∠B=∠D,AB=AD. (1)求证:△ABC≌△ADE; (2)如果∠AEC=75°,将△ADE绕着点A旋转一个锐角后与△ABC重合,求这个旋转角的大小. ![]() |
|
(2010•镇江)解方程或不等式组; (1) ![]() (2) ![]() |
|
(2010•镇江)计算化简: (1) ![]() (2) ![]() |
|
(2010•镇江)小明新买了一辆“和谐”牌自行车,说明书中关于轮胎的使用说明如下:小明看了说明书后,和爸爸讨论:小明经过计算,得出这对轮胎能行驶的最长路程是( )![]() A.9.5千公里 B. ![]() C.9.9千公里 D.10千公里 |
|
(2010•镇江)两直线l1:y=2x-1,l2:y=x+1的交点坐标为( ) A.(-2,3) B.(2,-3) C.(-2,-3) D.(2,3) |
|
(2010•镇江)有A,B两只不透明口袋,每只品袋里装有两只相同的球,A袋中的两只球上分别写了“细”、“致”的字样,B袋中的两只球上分别写了“信”、“心”的字样,从每只口袋里各摸出一只球,刚好能组成“细心”字样的概率是( ) A. ![]() B. ![]() C. ![]() D. ![]() |
|