(2005•成都)在如图所示的方格图中,我们称每个小正方形的顶点为“格点”,以格点为顶点的三角形叫做“格点三角形”根据图形,解决下面的问题: (1)图中的格点△A′B′C′是由格点△ABC通过哪些变换方法得到的? (2)如果以直线a,b为坐标轴建立平面直角坐标系后,点A的坐标为(-3,4),请写出格点△DEF各顶点坐标,并求出△DEF的面积. ![]() |
|
(2005•茂名)如图,有一条小船,![]() (1)若把小船平移,使点A平移到点B,请你在图中画出平移后的小船; (2)若该小船先从点A航行到达岸边L的点P处补给后,再航行到点B,但要求航程最短,试在图中画出点P的位置. |
|
(2005•陕西)如图,在直角坐标系中 (1)描出下列各点,并将这些点用线段依次连接起来. (-5,0),(-5,4),(-8,7),(-5,6),(-2,8),(-5,4); (2)把(1)中的图案向右平移10个单位,作出平移后的图案. ![]() |
|
(2005•泰安)已知,△ABC是等边三角形,将一块含30°角的直角三角板DEF如图放置,让三角板在BC所在的直线l上向右平移.当点E与点B重合时,点A恰好落在三角板的斜边DF上. 问:在三角板平移过程中,图中是否存在与线段EB始终相等的线段(假定AB、AC与三角板斜边的交点为G、H)?如果存在,请指出这条线段,并证明;如果不存在,请说明理由. (说明:结论中不得含有图中未标识的字母) ![]() |
|
(2005•武汉)如图,在平面直角坐标系中,点O1的坐标为(-4,0),以点O1为圆心,8为半径的圆与x轴交于A、B两点,过点A作直线l与x轴负方向相交成60°角.以点O2(13,5)为圆心的圆与x轴相切于点D.![]() (1)求直线l的解析式; (2)将⊙O2以每秒1个单位的速度沿x轴向左平移,同时直线l沿x轴向右平移,当⊙O2第一次与⊙O1相切时,直线l也恰好与⊙O2第一次相切,求直线l平移的速度; (3)将⊙O2沿x轴向右平移,在平移的过程中与x轴相切于点E,EG为⊙O2的直径,过点A作⊙O2的切线,切⊙O2于另一点F,连接AO2、FG,那么FG•AO2的值是否会发生变化?如果不变,说明理由并求其值;如果变化,求其变化范围. |
|
(2005•南通)如图,在平面直角坐标系中,已知A(-10,0),B(-8,6),O为坐标原点,△OAB沿AB翻折得到△PAB.将四边形OAPB先向下平移3个单位长度,再向右平移m(m>0)个单位长度,得到四边形O1A1P1B1.设四边形O1A1P1B1与四边形OAPB重叠部分图形的周长为l. (1)求A1、P1两点的坐标(用含m的式子表示); (2)求周长L与m之间的函数关系式,并写出m的取值范围. ![]() |
|
(2005•中山)将方格中的图案作下列变换,请画出相应的图案: (1)沿y轴正向平移4个单位; (2)关于y轴轴对称. ![]() |
|
(2005•绵阳)(一)如图,放在直角坐标系中的正方形ABCD的边长为4.现做如下实验: 抛掷一枚均匀的正四面体骰子(它有四个顶点,各顶点的点数分别是1至4这四个数字中的一个),每个顶点朝上的机会是相同的,连续抛掷两次,将骰子朝上的顶点的点数作为直角坐标系中P点的坐标(第一次的点数作横坐标,第二次的点数作纵坐标). (1)求P点落在正方形ABCD面上(含正方形内和边界,下同)的概率; (2)将正方形ABCD平移整数个单位,则是否存在一种平移,使点P落在正方形ABCD面上的概率为 ![]() (二)若将(一)中所做实验用的“正四面体骰子”改为“各面标有1至6这六个数字中的一个的正方体骰子”,其余(实验步骤、作用)均不变.将正方形ABCD平移整数个单位,试求出点P落在正方形ABCD面上的概率. ![]() ![]() |
|
(2005•山西)如图所示,平移方格纸中的图形,使点A平移到A′处,画出放大一倍后的图形.(所画图中线段必须借助直尺画直,并用阴影表示).![]() |
|
(2005•济南)如图1,将边长为2cm的两个互相重合的正方形纸片按住其中一个不动,另一个绕点B顺时针旋转一个角度,若使重叠部分的面积为![]() 如图2,将上述两个互相重合的正方形纸片沿对角线AC翻折成等腰直角三角形后,再抽出其中一个等腰直角三角形沿AC移动,若重叠部分△A′PC的面积是1cm2,则它移动的距离AA′等于 cm. ![]() |
|