|
将一个面积为1的等边三角形挖去连接三边中点所组成的三角形(如第①图)后,继续挖去连接剩余各个三角形三边中点所成的三角形(如第②图、第③图)…如此进行挖下去,第④个图中,剩余图形的面积为 ,那么第n(n为正整数)个图中,挖去的所有三角形形的面积和为 (用含n的代数式表示).
如图,AB是⊙O的直径,C、D、E都是⊙O上的点,则∠ACE+∠BDE=
分解因式:
函数
如图,已知点F的坐标为(3,0),点A、B分别是某函数图像与x轴、y轴的交点,点P 是此图像上的一动点,设点P的横坐标为x,PF的长为d,且d与x之间满足关系:d=5-
A.①②③ B ①③ C.①②④ D.③④
如图3,四边形OABC为菱形,点A、B在以点O为圆心的弧DE上,若OA=3,∠1=∠2,则扇形ODE的面积为
A.
下列图形中,阴影部分面积为1的是
布袋中有红、黄、蓝三个球,它们除颜色不同以外,其他都相同,从袋中随机取出一个球后再放回袋中,这样取出球的顺序依次是“红—黄—蓝”的概率是 A.
某校对1200名女生的身高进行了测量,身高在1.58~1.63(单位:m)这一小组的频率为0.25,则该组的人数为 A.150人 B.300人 C.600人 D.900人
如图,△ABC中,D、E分别为AC、BC边上的点,AB∥DE,若AD=5,CD =3,DE =4,则AB的长为 A.
截止到2011年4月9日0时,北京小客车指标申请累计收到个人申请491671个,第四轮摇号中签率接近28比1. 将491671用科学记数法表示应为 A.
A.
如图,已知二次函数y=ax2+bx+8(a≠0)的图像与x轴交于点A(-2,0),B,与y轴交于点C,tan∠ABC=2.
(1)求抛物线的解析式及其顶点D的坐标; (2)设直线CD交x轴于点E.在线段OB的垂直平分线上是否存在点P,使得经过点P的直线PM垂直于直线CD,且与直线OP的夹角为75°?若存在,求出点P的坐标;若不存在,请说明理由; (3)过点B作x轴的垂线,交直线CD于点F,将抛物线沿其对称轴向上平移,使抛物线与线段EF总有公共点.试探究:抛物线最多可以向上平移多少个单位长度?
等边△ABC边长为6,P为BC边上一点,∠MPN=60°,且PM、PN分别于边AB、AC交于点E、F.
(1)如图1,当点P为BC的三等分点,且PE⊥AB时,判断△EPF的形状; (2)如图2,若点P在BC边上运动,且保持PE⊥AB,设BP=x,四边形AEPF面积的y,求y与x的函数关系式,并写出自变量x的取值范围; (3)如图3,若点P在BC边上运动,且∠MPN绕点P旋转,当CF=AE=2时,求PE的长.
已知关于x的方程(m-1)x2-(2m-1)x+2=0有两个正整数根.
(1) 确定整数m值; (2) 在(1)的条件下,利用图象写出方程(m-1)x2-(2m-1)x+2+
如图1,在△ABC中,已知∠BAC=45°,AD⊥BC于D,BD=2,DC=3,求AD的长. 小萍同学灵活运用轴对称知识,将图形进行翻折变换如图1.她分别以AB、AC为对称轴,画出△ABD、△ACD的轴对称图形,D点的对称点为E、F,延长EB、FC相交于G点,得到四边形AEGF是正方形.设AD=x,利用勾股定理,建立关于x的方程模型,求出x的值.
(1)请你帮小萍求出x的值. (2) 参考小萍的思路,探究并解答新问题: 如图2,在△ABC中,∠BAC=30°,AD⊥BC于D,AD=4.请你按照小萍的方法画图,得到四边形AEGF,求△BGC的周长.(画图所用字母与图1中的字母对应)
在平面直角坐标系xOy中,一次函数y=k
(1)求k (2)如图,点D在x轴上,在梯形OBCD中,BC∥OD,OB=DC,过点C作CE⊥OD于点E,CE和反比例函数的图象交于点P,当梯形OBCD的面积为18时,求PE:PC的值.
已知:AB是⊙O的弦,OD⊥AB于M交⊙O于点D,CB⊥AB交AD的延长线于C.
(1)求证:AD=DC; (2)过D作⊙O的切线交BC于E,若DE=2,CE=1,求⊙O的半径.
某中学的地理兴趣小组在本校学生中开展主题为“地震知识知多少”的专题调查活动,采取随机抽样的方式进行问卷调查,问卷调查的结果分为“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,划分等级后的数据整理如下表:
(1)表中的m的值为_______,n的值为 . (2)根据表中的数据,请你计算“非常了解”的频率在下图中所对应的扇形的圆心角的度数,并补全扇形统计图. (3)若该校有1500名学生,请根据调查结果估计这些学生中“比较了解”的人数约为多少?
如图,在平行四边形
(1)求证:∠BAE=∠DAF; (2)若AE=4,AF=
随着人们节能意识的增强,节能产品进入千家万户,今年1月小明家将天燃气热水器换成了太阳能热水器.去年12月份小明家的燃气费是96元,从今年1月份起天燃气价格每立方米上涨25%,小明家2月份的用气量比去年12月份少10立方米,2月份的燃气费是90元.问小明家2月份用气多少立方米.
如图,在四边形ABCD中, AC是∠DAE的平分线,DA∥CE,∠AEB=∠CEB. 求证:AB=CB.
先化简,再求值:
求不等式组
计算:
如图,直线
已知A、B是抛物线y=x2-4x+3上关于对称轴对称的两点,则A、B的坐标可能 是 .(写出一对即可)
若分式
如图,在矩形ABCD中,AB=5,BC=4,E、F分别是AB、AD的中点.动点
A. C.
若从10~99这连续90个正整数中选出一个数,其中每个数被选出的机会相等,则选出的 数其十位数字与个位数字的和为9的概率是 A.
|