|
已知关于x的一元二次方程x2 = 2(1-m)x-m2 的两实数根为x1,x2. (1)求m的取值范围; (2)设y = x1 + x2,当y取得最小值时,求相应m的值,并求出最小值.
已知关于 (1)求实数 (2)当
如图,P是正三角形ABC 内的一点,且PA=6,PB=8,PC=10。若将△PAC绕点A逆时针旋转后,得到△P/AB。⑴求点P与点P′之间的距离 ⑵∠APB的度数。
已知x1=-1是方程
某商厦今年一月份销售额为60万元,二月份由于种种原因,经营不善,销售额下降10%,以后加强改进管理,经减员增效,大大激发了全体员工的积极性,月销售额大幅度上升,到四月份销售额猛增到96万元,求三、四月份平均每月增长的百分率是多少?(精确到0.1%)
如图,正方形网格中,△ABC为格点三角形(顶点都是格点), 将△ABC绕点A按逆时针方向旋转90°得到
先化简,再求值:
计算:(
解方程:2
将直角边长为5cm的等腰直角
若0<x<5,则
将点A (3,l)绕原点O按顺时针方向旋转90°到点B,则点B的坐标是
设一元二次方程
计算:
若方程 A.
某商品原价200元,连续两次降价 A. C.
用配方法解方程 A.
下列各式中是最简二次根式的是( ). A.
观察下列银行标志,从图案看既是轴对称图形又是中心对称图形的有( )
如图,已知∠MON的边OM上有两点A、B,边ON上有两点C、D,且AB=CD,P为∠MON的平分线上一点.问: (1)△ABP与△PCD是否全等?请说明理由. (2)△ABP与△PCD的面积是否相等?请说明理由.
如图,画一个两条直角边相等的Rt△ABC,并过斜边BC上一点D作射线AD,再分别过B、C作射线AD的垂线BE和CF,垂足分别为E、F,量出BE、CF、EF的长,改变D的位置,再重复上面的操作,你是否发现BE、CF、EF的长度之间有某种关系?能说清其中的奥妙吗?
如图,已知AC∥BD、EA、EB分别平分∠CAB和△DBA,CD过点E,则AB与AC+BD相等吗?请说明理由.
已知如图,AC交BD于点O,AB=DC,∠A=∠D.(1)请写出符合上述条件的五个结论(并且不再添加辅助线,对顶角除外);(2)从你写出的5个结论中,任选一个加以证明.
如图,AB=AC,∠BAC=900,BD⊥AE于D,CE⊥AE于E,且BD>CE,
如图,AE是∠BAC的平分线,AB=AC。⑴若点D是AE上任意一点,则△ABD≌△ACD;⑵若点D是AE反向延长线上一点,结论还成立吗?试说明你的猜想。
如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,△ABC面积是28
、如图,∠AOP=∠BOP,AD⊥OB于D,BC⊥OA于C,AD与BC交于点P。 求证:AP=BP。
如图,BD=CD,BF⊥AC于F,CE⊥AB于E。求证:点D在∠BAC的角平分线上。
如图所示,AE是∠BAC的角平分线,EB⊥AB于B,EC⊥AC于C,D是AE上一点,求证:BD=CD。
、如图:AD=EB, BF=DG, BF∥DG,点A、B、C、D、E在同一直线上。求证: AF=EG。
|