满分5 > 高中数学试题 >

选修4-1:平面几何 如图,△ABC是内接于⊙O,AB=AC,直线MN切⊙O于点...

选修4-1:平面几何
如图,△ABC是内接于⊙O,AB=AC,直线MN切⊙O于点C,弦BD∥MN,AC与BD相交于点E.
(1)求证:△ABE≌△ACD;
(2)若AB=6,BC=4,求AE.

manfen5.com 满分网
(1)在两个三角形中,证明两个三角形全等,找出三角形全等的条件,根据同弧所对的圆周角相等,根据所给的边长相等,由边角边确定两个三角形是全等三角形. (2)根据角的等量代换得到一个三角形中两个角相等,得到等腰三角形,得到BE=4,可以证明△ABE与△DEC相似,得到对应边成比例,设出要求的边长,得到关于边长的方程,解方程即可. (1)证明:在△ABE和△ACD中, ∵AB=AC,∠ABE=∠ACD 又∠BAE=∠EDC ∵BD∥MN ∴∠EDC=∠DCN ∵直线是圆的切线, ∴∠DCN=∠CAD ∴∠BAE=∠CAD ∴△ABE≌△ACD (2)【解析】 ∵∠EBC=∠BCM∠BCM=∠BDC ∴∠EBC=∠BDC=∠BACBC=CD=4 又∠BEC=∠BAC+∠ABE=∠EBC+∠ABE=∠ABC=∠ACB ∴BC=BE=4 设AE=x,易证△ABE∽△DEC ∴ ∴DE= 又AE•EC=BE•ED   EC=6-x ∴4× ∴x= 即要求的AE的长是
复制答案
考点分析:
相关试题推荐
设函数f(x)=lnx-manfen5.com 满分网ax2-bx.
(Ⅰ)当a=b=manfen5.com 满分网时,求f(x)的最大值;
(Ⅱ)令F(x)=f(x)+manfen5.com 满分网ax2+bx+manfen5.com 满分网(0<x≤3),以其图象上任意一点P(x,y)为切点的切线的斜率k≤manfen5.com 满分网恒成立,求实数a的取值范围;
(Ⅲ)当a=0,b=-1时,方程2mf(x)=x2有唯一实数解,求正数m的值.
查看答案
已知圆manfen5.com 满分网及点C2(2,0),在圆C1上任取一点P,连接C2P,做线段C2P的中垂线交直线C1P于点M.
(1)当点P在圆C1上运动时,求点M的轨迹E的方程;
(2)设轨迹E与x轴交于A1,A2两点,在轨迹E上任取一点Q(x,y)(y≠0),直线QA1,QA2分别交y轴于D,E两点,求证:以线段DE为直径的圆C过两个定点,并求出定点坐标.
查看答案
如图,斜三棱柱ABC-A1B1C1的底面是直角三角形,∠ACB=90°,点B1在底面内的射影恰好是BC的中点,且BC=CA.
(1)求证:平面ACC1A1⊥平面B1C1CB;
(2)若二面角B-AB1-C1的余弦值为manfen5.com 满分网,设manfen5.com 满分网,求λ的值.

manfen5.com 满分网 查看答案
为从甲、乙两名运动员中选拔一人参加2010年广州亚运会跳水项目,对甲、乙两名运动员进行培训.现分别从他们在培训期间参加的若干次预赛成绩中随机抽取6次,得出茎叶图如如图所示
(Ⅰ)从平均成绩及发挥稳定性的角度考虑,你认为选派哪名运动员合适?
(Ⅱ)若将频率视为概率,对甲运动员在今后3次比赛成绩进行预测,记这3次成绩中高于80分的次数为ξ,求ξ的分布列及数学期望Eξ.

manfen5.com 满分网 查看答案
已知数列的前n项和为Sn,且满足manfen5.com 满分网
(1)求数列{an}的通项公式;
(2)若bn=log2anmanfen5.com 满分网,且数列{cn}的前n项和为Tn,求Tn的取值范围.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.