满分5 > 高中物理试题 >

小型登月器连接在航天站上,一起绕月球做圆周运动,其轨道半径为月球半径的5倍,某时...

小型登月器连接在航天站上,一起绕月球做圆周运动,其轨道半径为月球半径的5倍,某时刻,航天站使登月器减速分离,登月器沿如图所示的椭圆轨道登月,在月球表面逗留一段时间完成科考工作后,经快速启动仍沿原椭圆轨道返回,当第一次回到分离点时恰与航天站对接,登月器快速启动时间可以忽略不计,整个过程中航天站保持原轨道绕月运行。已知月球表面的重力加速度为g,月球半径为R,不考虑月球自转的影响,则登月器可以在月球上停留的最短时间约为

A.     B.

C.     D.

 

A 【解析】试题分析:设登月器和航天飞机在半径为3R的轨道上运行时的周期为T, 由牛顿第二定律有:其中 r=3R 解得: 在月球表面的物体所受重力近似等于万有引力:解得:GM=gR2 所以,设登月器在小椭圆轨道运行的周期是T1,航天飞机在大圆轨道运行的周期是T2. 对登月器和航天飞机依据开普勒第三定律分别有:,解得,为使登月器仍沿原椭圆轨道回到分离点与航天飞机实现对接,登月器可以在月球表面逗留的时间t应满足:t=nT2﹣T1(其中,n=1、2、3、…)…由以上可得:(其中,n=1、2、3、…), 当n=1时,登月器可以在月球上停留的时间最短,即t=4.7π,故选A.所以选A正确。 考点:万有引力定律及其应用、开普勒第三定律 【名师点睛】此题考查了万有引力定律在航天问题中的应用问题;关键是首先知道卫星做圆周运动的向心力由万有引力来提供,即牢记,知道线速度、周期与轨道半径的关系,知道轨道半径越大,线速度越小,周期越大.应用开普勒第三定律求出椭圆轨道的周期,再结合周期间的关系即可解题。  
复制答案
考点分析:
相关试题推荐

在物理学理论建立的过程中,有许多科学家做出了伟大的贡献关于科学家和他们的贡献,下列说法正确的是 

A伽利略把斜面实验的结果合理外推,发现了自由落体运动规律和行星运动的规律

B牛顿通过实验测出了引力常量并进行了著名的“月﹣地检验”

C牛顿最早指出力不是维持物体运动的原因并提出了惯性定律

D开普勒通过分析第谷观测的天文数据得出开普勒第三定律

 

查看答案

如图,A、B两球可视为质点质量均为m,固定在轻弹簧的两端,分别用细绳悬于O点,其中球A处在光滑竖直墙面和光滑水平地面的交界处已知两球均处于静止状态,OA沿竖直方向,OAB恰好构成一个正三角形,重力加速度为g,则下列说法正确的是 

A球A对竖直墙壁的压力大小为mg

B弹簧对球A的弹力大于对球B的弹力

C绳OB的拉力大小等于mg

D球A对地面的压力不可能为零

 

查看答案

如图所示为甲乙两个物体做同向直线运动的v﹣t图象,则关于两物体在0t1时间内的运动,下列说法正确的是 

A两物体间的距离一定在不断减小

B两物体的位移差一定是不断增大

C两物体的速度差一直在增大

D两物体的加速度都是先增大后减小

 

查看答案

如图所示,宽度为L的区域被平均分为区域Ⅰ、Ⅱ、Ⅲ,其中Ⅰ、Ⅲ有匀强磁场,他们的磁感应强度大小相等,方向垂直纸面且相反,长为L,宽为的矩形abcd紧邻磁场下方,与磁场边界对齐,O为dc边中点,P为dc边中垂线上一点,OP=3L,矩形内有匀强电场,电场强度大小为E,方向由a指向O;电荷量为q,质量为m,重力不计的带电粒子由a点静止释放,经电场加速后进入磁场,运动轨迹刚好与区域Ⅲ的右边界相切;

1求该粒子经过O点的速度vo

2求匀强磁场的磁感应强度大小B

3若在AO之间距O点x处静止释放该粒子,粒子在磁场中共偏转n次到达P点,求x满足的条件及n的可能取值

 

查看答案

如图a所示,竖直平面内两根光滑且不计电阻的长平行金属导轨,间距L,导轨间的空间内存在垂直导轨平面的匀强磁场;将一质量m、电阻R的金属杆水平靠在导轨处上下运动,与导轨接触良好

1若磁感应强度随时间变化满足B=kt,k为已知非零常数金属杆在距离导轨顶部L处释放,则何时释放,会获得向上的加速度

2若磁感应强度随时间变化满足,B0、c、d均为已知非零常数为使金属杆中没有感应电流产生,从t=0时刻起,金属杆应在外力作用下做何种运动?

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.