(1)通过三视图说明几何体的特征,证明MN平行平面CDEF内的直线BC,即可证明MN∥平面CDEF;
(2)说明四边形 CDEF是矩形,AH⊥平面CDEF,然后就是求多面体A-CDEF的体积.
【解析】
(1)证明:由多面体AEDBFC的三视图知,三棱柱AED-BFC中,底面DAE是等腰
直角三角形,DA=AE=2,DA⊥平面ABEF,侧面ABFE,ABCD都是边长为2的正方形.
连接EB,则M是EB的中点,
在△EBC中,MN∥EC,
且EC⊂平面CDEF,MN⊄平面CDEF,
∴MN∥平面CDEF.
(2)因为DA⊥平面ABEF,EF⊂平面ABEF,∴EF⊥AD,
又EF⊥AE,所以,EF⊥平面ADE,
∴四边形 CDEF是矩形,
且侧面CDEF⊥平面DAE
取DE的中点H,∵DA⊥AE,DA=AE=2,∴,
且AH⊥平面CDEF.
所以多面体A-CDEF的体积.