满分5 > 高中数学试题 >

公差d≠0的等差数列{an}的前n项和为Sn,已知,. (Ⅰ)求数列{an}的通...

公差d≠0的等差数列{an}的前n项和为Sn,已知manfen5.com 满分网manfen5.com 满分网
(Ⅰ)求数列{an}的通项公式an及其前n项和Sn
(Ⅱ)记manfen5.com 满分网,若自然数η1,η2,…,ηk,…满足1≤η1<η2<…<ηk<…,并且manfen5.com 满分网成等比数列,其中η1=1,η2=3,求ηk(用k表示);
(Ⅲ)记manfen5.com 满分网,试问:在数列{cn}中是否存在三项cr,cs,ct(r<s<t,r,s,t∈N*)恰好成等比数列?若存在,求出此三项;若不存在,请说明理由.
(Ⅰ)把a1代入S3,求得d,进而根据等差数列的通项公式和求和公式求得an及其前n项和Sn. (Ⅱ)把(1)中求得的an代入求得bn,进而求得,即数列,的公比,根据等比数列的通项公式求得,进而根据求得ηk. (Ⅲ)根据(1)中求得的Sn求得cn,假设存在三项cr,cs,ct成等比数列,则cs2=cr•ct,把cn代入整理得进而看当2s-r-t≠0时看相等,当2s-r-t=0时,r和t的关系,进而判断假设是否成立. 【解析】 (Ⅰ)∵,,∴d=2 所以, (Ⅱ)由题意,bn=2n,首项b1=2,又数列, 的公比 ∴,又,∴ηk=3k-1 (Ⅲ)易知,假设存在三项cr,cs,ct成等比数列,则cs2=cr•ct, 即, 整理得 ①当2s-r-t≠0时,, ∵r,s,t∈N*,∴是 有理数,这与为无理数矛盾 ②当2s-r-t=0时,则rt+r+t-s2-2s=0,从而, 解得r=t,这与r<t矛盾. 综上所述,不存在满足题意的三项cr,cs,ct
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网扬州某地区要建造一条防洪堤,其横断面为等腰梯形,腰与底边成角为60°(如图),考虑到防洪堤坚固性及石块用料等因素,设计其横断面要求面积为manfen5.com 满分网平方米,且高度不低于manfen5.com 满分网米.记防洪堤横断面的腰长为x(米),外周长(梯形的上底线段BC与两腰长的和)为y(米).
(1)求y关于x的函数关系式,并指出其定义域;
(2)要使防洪堤横断面的外周长不超过10.5米,则其腰长x应在什么范围内?
(3)当防洪堤的腰长x为多少米时,堤的上面与两侧面的水泥用料最省(即断面的外周长最小)?求此时外周长的值.
查看答案
已知圆M的方程为x2+(y-2)2=1,直线l的方程为x-2y=0,点P在直线l上,过P点作圆M的切线PA,PB,切点为A,B.
(1)若∠APB=60°,试求点P的坐标;
(2)若P点的坐标为(2,1),过P作直线与圆M交于C,D两点,当manfen5.com 满分网时,求直线CD的方程;
(3)求证:经过A,P,M三点的圆必过定点,并求出所有定点的坐标.
查看答案
manfen5.com 满分网如图,直棱柱ABCD-A1B1C1D1中,底面ABCD是直角梯形,∠BAD=∠ADC=90°AB=2AD=2CD=2.
(1)求证:AC⊥平面BB1C1C;
(2)在A1B1上是否存一点P,使得DP与平面BCB1与平面ACB1都平行?证明你的结论.
查看答案
在△ABC中,角A,B,C的对边分别是a,b,c,且A,B,C成等差数列.
(1)若manfen5.com 满分网manfen5.com 满分网=-manfen5.com 满分网,b=manfen5.com 满分网,求a+c的值;
(2)求2sinA-sinC的取值范围.
查看答案
已知数列{an}(n∈N*)满足manfen5.com 满分网,且t<a1<t+1,其中t>2,若an+k=an(k∈N*),则实数k的最小值为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.