满分5 > 高中数学试题 >

如图所示,在直角梯形ABCD中,|AD|=3,|AB|=4,|BC|=,曲线段D...

如图所示,在直角梯形ABCD中,|AD|=3,|AB|=4,|BC|=manfen5.com 满分网,曲线段DE上任一点到A、B两点的距离之和都相等.
(1)建立适当的直角坐标系,求曲线段DE的方程;
(2)过C能否作一条直线与曲线段DE相交,且所得弦以C为中点,如果能,求该弦所在的直线的方程;若不能,说明理由.

manfen5.com 满分网
(!)由题意,先建立平面直角坐标系,利用曲线的方程这一概念求其动点的轨迹方程,要注意求解方程之后要有题意去排杂; (2)对于(2)这种是否C能否,往往要利用假设的思想,设出变量,存在建立方程求解,不存在会产生矛盾及可求解. 【解析】 (1)以直线AB为x轴,线段AB的中点为原点建立直角坐标系, 则A(-2,0),B(2,0),C(2,),D(-2,3). 依题意,曲线段DE是以A、B为焦点的椭圆的一部分. ∵a==12, ∴所求方程为. (2)设这样的弦存在,其方程y-=k(x-2),即y=k(x-2)+,将其代入=1 得k-36=0 设弦的端点为M(x1,y1),N(x2,y2),则由=2,知x1+x2=4,∴-=4,解得k=-. ∴弦MN所在直线方程为y=-,验证得知,这时适合条件. 故这样的直线存在,其方程为y=-.
复制答案
考点分析:
相关试题推荐
为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=manfen5.com 满分网,若不建隔热层,每年能源消耗费用为8万元.设f(x)为隔热层建造费用与20年的能源消耗费用之和.
(Ⅰ)求k的值及f(x)的表达式.
(Ⅱ)隔热层修建多厚时,总费用f(x)达到最小,并求最小值.
查看答案
如图,在四棱锥P-ABCD中,PD上⊥平面ABCD,AD⊥CD,且BD平分∠ADC,E为PC的中点,AD=CD=l,BC=PC,DB=2manfen5.com 满分网
(Ⅰ)证明PA∥平面BDE;
(Ⅱ)证明AC⊥平面PBD:
(Ⅲ)求四棱锥P-ABCD的体积.

manfen5.com 满分网 查看答案
在平面直角坐标系xOy中,点A(-1,-2)、B(2,3)、C(-2,-1).
(1)求以线段AB、AC为邻边的平行四边形两条对角线的长;
(2)设实数t满足(manfen5.com 满分网)•manfen5.com 满分网=0,求t的值.
查看答案
己知函数f(x)=2acos2x+bsinxcosx,且f(0)=2,f(manfen5.com 满分网)=manfen5.com 满分网
(Ⅰ)求f(x)的最大值与最小值;
(Ⅱ)求f(x)的单调增区间.
查看答案
已知实数x,y满足(x+2)2+(y-3)2=1,则|3x+4y-26|的最小值为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.