如图,⊙O内切于△ABC的边于D,E,F,AB=AC,连接AD交⊙O于点H,直线HF交BC的延长线于点G.
(1)求证:圆心O在直线AD上.
(2)求证:点C是线段GD的中点.
考点分析:
相关试题推荐
已知定义在正实数集上的函数f(x)=
x
2+2ax,g(x)=3a
2lnx+b,其中a>0.设两曲线y=f(x),y=g(x)有公共点,且在该点处的切线相同.
(1)用a表示b,并求b的最大值;
(2)求F(x)=f(x)-g(x)的极值.
查看答案
已知椭圆C
1、抛物线C
2的焦点均在x轴上,C
1的中心和C
2的顶点均为原点O,从每条曲线上取两个点,将其坐标记录于下表中:
(Ⅰ)求C
1、C
2的标准方程;
(Ⅱ)请问是否存在直线l满足条件:①过C
2的焦点F;②与C
1交不同两点M、N且满足
?若存在,求出直线l的方程;若不存在,说明理由.
查看答案
如图,在底面为直角梯形的四棱锥P-ABCD中AD∥BC,∠ABC=90°,PD⊥平面ABCD,AD=1,AB=
,BC=4.
(1)求证:BD⊥PC;
(2)当PD=1时,求此四棱锥的表面积.
查看答案
已知数列{a
n}满足a
1=1,a
n+1=2a
n+1(n∈N
*).
(1)求证:数列{a
n+1}是等比数列,并写出数列{a
n}的通项公式;
(2)若数列{b
n}满足
…
,求数列{b
n}的前n项和S
n.
查看答案
已知函数f(x)=2cosxsin(x+
)-
.
(1)求函数f(x)的最小正周期;
(2)在给定的坐标系内,用“五点作图法”画出函数f(x)在一个周期内的图象.
查看答案