满分5 > 高中数学试题 >

如图,⊙O内切于△ABC的边于D,E,F,AB=AC,连接AD交⊙O于点H,直线...

manfen5.com 满分网如图,⊙O内切于△ABC的边于D,E,F,AB=AC,连接AD交⊙O于点H,直线HF交BC的延长线于点G.
(1)求证:圆心O在直线AD上.
(2)求证:点C是线段GD的中点.
切线PA和PB,切点分别是A和B根据切线的性质和圆周角定理,四边形内角和是360度即可求得劣弧AB的度数. 证明:(1)∵AB=AC,AF=AE ∴CD=BE 又∵CF=CD,BD=BE ∴CD=BD 又∵△ABC是等腰三角形, ∴AD是∠CAB的角分线 ∴圆心O在直线AD上.(5分) (II)连接DF,由(I)知,DH是⊙O的直径, ∴∠DHF=90°,∴∠FDH+∠FHD=90° 又∵∠G+∠FHD=90° ∴∠FDH=∠G ∵⊙O与AC相切于点F ∴∠AFH=∠GFC=∠FDH ∴∠GFC=∠G ∴CG=CF=CD ∴点C是线段GD的中点.(10分)
复制答案
考点分析:
相关试题推荐
已知定义在正实数集上的函数f(x)=manfen5.com 满分网x2+2ax,g(x)=3a2lnx+b,其中a>0.设两曲线y=f(x),y=g(x)有公共点,且在该点处的切线相同.
(1)用a表示b,并求b的最大值;
(2)求F(x)=f(x)-g(x)的极值.
查看答案
已知椭圆C1、抛物线C2的焦点均在x轴上,C1的中心和C2的顶点均为原点O,从每条曲线上取两个点,将其坐标记录于下表中:
x3-24manfen5.com 满分网
y-2manfen5.com 满分网-4manfen5.com 满分网
(Ⅰ)求C1、C2的标准方程;
(Ⅱ)请问是否存在直线l满足条件:①过C2的焦点F;②与C1交不同两点M、N且满足manfen5.com 满分网?若存在,求出直线l的方程;若不存在,说明理由.
查看答案
如图,在底面为直角梯形的四棱锥P-ABCD中AD∥BC,∠ABC=90°,PD⊥平面ABCD,AD=1,AB=manfen5.com 满分网,BC=4.
(1)求证:BD⊥PC;
(2)当PD=1时,求此四棱锥的表面积.

manfen5.com 满分网 查看答案
已知数列{an}满足a1=1,an+1=2an+1(n∈N*).
(1)求证:数列{an+1}是等比数列,并写出数列{an}的通项公式;
(2)若数列{bn}满足manfen5.com 满分网manfen5.com 满分网,求数列{bn}的前n项和Sn
查看答案
已知函数f(x)=2cosxsin(x+manfen5.com 满分网)-manfen5.com 满分网
(1)求函数f(x)的最小正周期;
(2)在给定的坐标系内,用“五点作图法”画出函数f(x)在一个周期内的图象.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.