满分5 > 初中数学试题 >

如图,在梯形ABCD中,AD∥BC,∠B=90°,∠C=45°,AD=1,BC=...

如图,在梯形ABCD中,AD∥BC,∠B=90°,∠C=45°,AD=1,BC=4,E为AB中点,EF∥DC交BC于点F,求EF的长.

manfen5.com 满分网
可过点D作DG⊥BC于点G,解直角三角形DGC,求出DG=AB的长,进一步求出BE,再解直角三角形BEF,再解这个三角形即可;或延长FE交DA的延长线于点G,证明四边形DGFC是平行四边形,再证明△AGE≌△BFE,说明AG=BF,最后解依据DG=FC得出的一元一次方程即可. 【解析】 解法一:如图1,过点D作DG⊥BC于点G. ∵AD∥BC,∠B=90°, ∴∠A=90度. 可得四边形ABGD为矩形. ∴BG=AD=1,AB=DG. ∵BC=4, ∴GC=3. ∵∠DGC=90°,∠C=45°, ∴∠CDG=45度. ∴DG=GC=3. ∴AB=3. 又∵E为AB中点, ∴BE=AB=. ∵EF∥DC, ∴∠EFB=45度. 在△BEF中,∠B=90度. ∴EF==. 解法二:如图2,延长FE交DA的延长线于点G. ∵AD∥BC,EF∥DC, ∴四边形GFCD为平行四边形,∠G=∠1. ∴GD=FC. ∵EA=EB,∠2=∠3, ∴△GAE≌△FBE. ∴AG=BF. ∵AD=1,BC=4, 设AG=x,则BF=x,CF=4-x,GD=x+1. ∴x+1=4-x. 解得x=.∵∠C=45°, ∴∠1=45度. 在△BEF中,∠B=90°, ∴EF=.
复制答案
考点分析:
相关试题推荐
已知:如图,在梯形ABCD中,AD∥BC,AB=DC=AD=2,BC=4.求∠B的度数及AC的长.

manfen5.com 满分网 查看答案
如图,在梯形ABCD中,AD∥BC,BD⊥DC,∠C=60°,AD=4,BC=6,求AB的长.

manfen5.com 满分网 查看答案
已知:如图,P是正方形ABCD内一点,在正方形ABCD外有一点E,满足∠ABE=∠CBP,BE=BP.
(1)求证:△CPB≌△AEB;
(2)求证:PB⊥BE;
(3)若PA:PB=1:2,∠APB=135°,求cos∠PAE的值.

manfen5.com 满分网 查看答案
如图1,正方形ABCD和正三角形EFG的边长都为1,点E,F分别在线段AB,AD上滑动,设点G到CD的距离为x,到BC的距离为y,记∠HEF为α(当点E,F分别与B,A重合时,记α=0°).
(1)当α=0°时(如图2所示),求x,y的值(结果保留根号);
(2)当α为何值时,点G落在对角形AC上?请说出你的理由,并求出此时x,y的值(结果保留根号);
(3)请你补充完成下表(精确到0.01):
α15°30°45°60°75°90°
x0.030.29
y0.290.130.03
(4)若将“点E,F分别在线段AB,AD上滑动”改为“点E,F分别在正方形ABCD边上滑动”.当滑动一周时,请使用(3)的结果,在图4中描出部分点后,勾画出点G运动所形成的大致图形.
(参考数据:manfen5.com 满分网≈1.732,sin15°=manfen5.com 满分网≈0.259,sin75°=manfen5.com 满分网≈0.966)
manfen5.com 满分网manfen5.com 满分网
查看答案
如图,在矩形ABCD中,E是BC边上的点,AE=BC,DF⊥AE,垂足为F,连接DE.
(1)求证:△ABE≌△DFA;
(2)如果AD=10,AB=6,求sin∠EDF的值.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.