满分5 > 初中数学试题 >

已知:如图,在梯形ABCD中,AD∥BC,AB=DC=AD=2,BC=4.求∠B...

已知:如图,在梯形ABCD中,AD∥BC,AB=DC=AD=2,BC=4.求∠B的度数及AC的长.

manfen5.com 满分网
解法一:分别作AF⊥BC,DG⊥BC,F、G是垂足,把梯形转换成矩形和两个直角三角形,首先利用梯形的性质和已知条件证明Rt△AFB≌Rt△DGC,然后在Rt△AFB中解直角三角形即可求出所求线段; 解法二:过A点作AE∥DC交BC于点E,把梯形的问题转换成平行四边形和等边三角形,然后利用等边三角形的性质和三角函数的定义即可求出所求线段. 【解析】 解法一:分别作AF⊥BC,DG⊥BC,F、G是垂足, ∴∠AFB=∠DGC=90°,AF∥DG, ∵AD∥BC, ∴四边形AFGD是矩形. ∴AF=DG, ∵AB=DC, ∴Rt△AFB≌Rt△DGC. ∴BF=CG, ∵AD=2,BC=4, ∴BF=1, 在Rt△AFB中, ∵cosB==, ∴∠B=60°, ∵BF=1, ∴AF=, ∵FC=3, 由勾股定理, 得AC=2, ∴∠B=60°,AC=2. 解法二:过A点作AE∥DC交BC于点E, ∵AD∥BC, ∴四边形AECD是平行四边形. ∴AD=EC,AE=DC, ∵AB=DC=AD=2,BC=4, ∴AE=BE=EC=AB, 即AB=BE=AE,AE=CE, ∴△BAC是直角三角形,△ABE是等边三角形, ∴∠BAE=60°=∠AEB,∠EAC=∠ACE=∠AEB=30°, ∴∠BAC=60°+30°=90°,∠B=60°. 在Rt△ABC中, AC=ABtan∠B=AB•tan60°=2, ∴∠B=60°,AC=2.
复制答案
考点分析:
相关试题推荐
如图,在梯形ABCD中,AD∥BC,BD⊥DC,∠C=60°,AD=4,BC=6,求AB的长.

manfen5.com 满分网 查看答案
已知:如图,P是正方形ABCD内一点,在正方形ABCD外有一点E,满足∠ABE=∠CBP,BE=BP.
(1)求证:△CPB≌△AEB;
(2)求证:PB⊥BE;
(3)若PA:PB=1:2,∠APB=135°,求cos∠PAE的值.

manfen5.com 满分网 查看答案
如图1,正方形ABCD和正三角形EFG的边长都为1,点E,F分别在线段AB,AD上滑动,设点G到CD的距离为x,到BC的距离为y,记∠HEF为α(当点E,F分别与B,A重合时,记α=0°).
(1)当α=0°时(如图2所示),求x,y的值(结果保留根号);
(2)当α为何值时,点G落在对角形AC上?请说出你的理由,并求出此时x,y的值(结果保留根号);
(3)请你补充完成下表(精确到0.01):
α15°30°45°60°75°90°
x0.030.29
y0.290.130.03
(4)若将“点E,F分别在线段AB,AD上滑动”改为“点E,F分别在正方形ABCD边上滑动”.当滑动一周时,请使用(3)的结果,在图4中描出部分点后,勾画出点G运动所形成的大致图形.
(参考数据:manfen5.com 满分网≈1.732,sin15°=manfen5.com 满分网≈0.259,sin75°=manfen5.com 满分网≈0.966)
manfen5.com 满分网manfen5.com 满分网
查看答案
如图,在矩形ABCD中,E是BC边上的点,AE=BC,DF⊥AE,垂足为F,连接DE.
(1)求证:△ABE≌△DFA;
(2)如果AD=10,AB=6,求sin∠EDF的值.

manfen5.com 满分网 查看答案
已知:如图,在平行四边形ABCD中,E是AD的中点,连接BE、CE,∠BEC=90°.
(1)求证:BE平分∠ABC;
(2)若EC=4,且manfen5.com 满分网,求四边形ABCE的面积.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.