|
(8分)为研究额定电压为2.5V的某电阻的伏安特性,所做部分实验如下: ⑴用多用电表测量该电阻的阻值,选用“×10”倍率的电阻档测量,发现指针偏转角度太小,因此需选择 倍率的电阻档(选填“×1”或“×100”),欧姆调零后再进行测量,示数如图所示,测量值为 Ω。
⑵为描绘该电阻的伏安特性曲线(要求电压从零开始连续变化),提供的器材如下: A.电流表A(量程2mA、内阻约30 Ω) B.电压表V(量程3V、内阻约3kΩ) C.滑动变阻器R1(阻值0~10kΩ、额定电流0.5A) D.滑动变阻器R2(阻值0~10Ω、额定电流2A) E.直流电源(电动势3V、内阻约0.2Ω),开关一个,导线若干滑动变阻器应选用 (选填器材前的字母)。 ⑶图示电路中部分导线已连接,请用笔画线代替导线将电路补充完整。
|
|
|
如图,固定在地面的斜面体上开有凹槽,槽内紧挨放置六个半径均为r的相同小球,各球编号如图。斜面与水平轨道OA平滑连接,OA长度为6r。现将六个小球由静止同时释放,小球离开A点后均做平抛运动,不计一切摩擦。则在各小球运动过程中,下列说法正确的是( )
A.球1的机械能守恒 B.球6在OA段机械能增大 C.球6的水平射程最小 D.六个球落地点各不相同
|
|
|
2012年10月15日,奥地利极限运动员鲍姆加特纳从距地面高度约3.9万米的高空跳下,并成功着陆。假设他沿竖直方向下落,其v-t图象如图,则下列说法中正确的是( )
A.0~t1时间内运动员及其装备机械能守恒 B.t1~t2时间内运动员处于超重状态 C.t1~t2时间内运动员的平均速度 D.t2~t4时间内重力对运动员做的功等于他克服阻力做的功
|
|
|
如图所示,E为电源,其内阻不可忽略,RT为热敏电阻,其阻值随温度的升高而减小,L为指示灯泡,C为平行板电容器,G为灵敏电流计。闭合开关S,当环境温度明显升高时,下列说法正确的是( )
A.L变亮 B.RT两端电压变大 C.C所带的电荷量保持不变 D.G中电流方向由a到b
|
|
|
关于涡流,下列说法中正确是( )
A.真空冶炼炉是利用涡流来熔化金属的装置 B.家用电磁炉锅体中的涡流是由恒定磁场产生的 C.阻尼摆摆动时产生的涡流总是阻碍其运动 D.变压器的铁芯用相互绝缘的硅钢片叠成能减小涡流
|
|
|
如图所示的电路中,理想变压器原、副线圈的匝数比n1∶n2=22∶5,电阻R1=R2=25Ω,D为理想二极管,原线圈接u=220
A.交流电的频率为100Hz B.通过R1的电流为2 C.通过R2的电流为 D.变压器的输入功率为200W
|
|
|
将一质量为m的小球靠近墙面竖直向上抛出,图甲是向上运动的频闪照片,图乙是下降时的频闪照片,O是运动的最高点,甲、乙两次的闪光频率相同。重力加速度为g,假设小球所受阻力大小不变,则可估算小球受到的阻力大小约为( )
A.mg B.
|
|
|
如图所示,无限大均匀带正电薄板竖直放置,其周围空间的电场可认为是匀强电场。光滑绝缘细管垂直于板穿过中间小孔,一个视为质点的带负电小球在细管内运动。以小孔为原点建立x轴,规定x轴正方向为加速度a、速度v的正方向,下图分别表示x轴上各点的电势φ,小球的加速度a、速度v和动能Ek随x的变化图象,其中正确的是
|
|
|
2013年12月11日,“嫦娥三号”从距月面高度为100km的环月圆轨道Ⅰ上的P点实施变轨,进入近月点为15km的椭圆轨道Ⅱ,由近月点Q成功落月,如图所示。关于“嫦娥三号”,下列说法正确的是( )
A.沿轨道Ⅰ运动至P时,需制动减速才能进入轨道Ⅱ B.沿轨道Ⅱ运行的周期大于沿轨道Ⅰ运行的周期 C.沿轨道Ⅱ运行时,在P点的加速度大于在Q点的加速度 D.在轨道Ⅱ上由P点运行到Q点的过程中,万有引力对其做负功
|
|
|
体育器材室里,篮球摆放在图示的球架上。已知球架的宽度为d,每只篮球的质量为m、直径为D,不计球与球架之间摩擦,则每只篮球对一侧球架的压力大小为( )
A. C.
|
|
