|
如图所示,质量为m,带电荷量为+q的P环套在固定的水平长直绝缘杆上,整个装置处在垂直于杆的水平匀强磁场中,磁感应强度大小为B.现给环一向右的初速度v0(
A. 环将向右减速,最后匀速 B. 环将向右减速,最后停止运动 C. 从环开始运动到最后达到稳定状态,损失的机械能是 D. 从环开始运动到最后达到稳定状态,损失的机械能是
|
|
|
如图所示,在水平匀强电场和垂直纸面向里的匀强磁场中,有一竖直足够长的 固定绝缘杆MN,小球P套在杆上,已知P的质量为m,电量为+q,电场强度为E、磁感应强度为B,P与杆间的动摩擦因数为μ,重力加速度为g。小球由静止开始下滑直到稳定的过程中:( )
A. 小球的加速度先增大后减小 B. 小球的机械能和电势能的总和保持不变 C. 下滑加速度为最大加速度一半时的速度可能是 D. 下滑加速度为最大加速度一半时的速度可能是
|
|
|
如图所示,不同带电粒子以不同速度由左端中线水平射入如图装置,左侧有竖直向下的匀强电场E和垂直于纸面向内的匀强磁场B1,右侧是垂直于纸面向外的磁场B2,中间有一小孔,不计粒子重力。下列说法正确的是
A. 只有正电荷才能沿中线水平通过B1区域进入到B2磁场区域。 B. 只有速度 C. 如果粒子打在胶片上离小孔的距离是d,则该粒子的荷质比为 D. 若甲、乙两个粒子的电荷量相等,打在胶片上离小孔的距离是2:3,则甲、乙粒子的质量比为2:3
|
|
|
如图所示,一个质量为m、电荷量为q的粒子(重力忽略不计),由静止经加速电压U加速后,垂直进入磁感应强度为B的匀强磁场中,粒子打到P点,OP=x,能正确反映x与U之间关系的是( ) A. x与 C. x与U成正比 D. x与U成反比
|
|
|
如图所示,平行金属板M、N之间的距离为d,其中匀强磁场的磁感应强度为B,方向垂直于纸面向外,有带电量相同的正、负离子组成的等离子束,以速度v沿着水平方向由左端连续射入,电容器的电容为C,当S闭合且电路达到稳定状态后,平行金属板M、N之间的内阻为r,电容器的带电量为Q,则下列说法正确的是( )
A.当S断开时,电容器的充电电荷量Q>CBdv B.当S断开时,电容器的充电电荷量Q=CBdv C.当S闭合时,电容器的充电电荷量Q=CBdv D.当S闭合时,电容器的充电电荷量Q>CBdv
|
|
|
如图,用三条细线悬挂的水平圆形线圈共有N匝,线圈由粗细均匀、单位长度质量为2克的导线绕制而成,三条细线呈对称分布,稳定时线圈平面水平,在线圈正下方放有一个圆柱形条形磁铁,磁铁的中轴线OO′垂直于线圈平面且通过其圆心O,测得线圈的导线所在处磁感应强度B的方向与水平线成60°角,线圈中通过的电流为0.1A,要使三条细线上的张力为零,重力加速度g取10m/s2.则磁感应强度B的大小应为
A. 4T B. C. 0.4
|
|
|
如图所示,两平行的粗糙金属导轨水平固定在匀强磁场中,磁感应强度为B,导轨宽度为L,一端与电源连接。一质量为m的金属棒ab垂直于平行导轨放置并接触良好,金属棒与导轨间的动摩擦因数为μ=
A. 30° B. 37° C. 45° D. 60°
|
|
|
如图所示,竖直线MN∥PQ,MN与PQ间距离为a,其间存在垂直纸面向里的匀强磁场,磁感应强度为B,O是MN上一点,O处有一粒子源,某时刻放出大量速率均为v(方向均垂直磁场方向)、比荷一定的带负电粒子(粒子重力及粒子间的相互作用力不计),已知沿图中与MN成θ=60°角射出的粒子恰好垂直PQ射出磁场,则粒子在磁场中运动的最长时间为:
A.
|
|
|
如图所示,一束质量、速度和电量不同的正离子垂直地射入匀强磁场和匀强电场正交的区域里,结果发现有些离子保持原来的运动方向,未发生任何偏转。如果让这些不偏转离子进入另一匀强磁场中,发现这些离子又分裂成几束,对这些进入后一磁场的离子,可得出正确结论( )
A. 它们的动能一定各不相同 B. 它们的电量一定各不相同 C. 它们的质量一定各不相同 D. 它们的电量和质量之比一定各不相同
|
|
|
两个绝缘导体环AA′、BB′大小相同,环面垂直,环中通有相同大小的恒定电流,如图所示,则圆心O处磁感应强度的方向为(AA′面水平,BB′面垂直纸面)( )
A. 指向右上方 B. 指向左上方 C. 竖直向上 D. 水平向右
|
|
