相关试题
当前位置:首页 > 高中数学试题
函数manfen5.com 满分网的最小正周期为   
等差数列{an}中,公差d=1,a3+a4=1,则a2+a4+…+a20=   
若函数manfen5.com 满分网的反函数为f-1(x),则f-1(-2)=   
用数学归纳法证明等式:manfen5.com 满分网(a≠1,n∈N*),验证n=1时,等式左边=   
函数manfen5.com 满分网的定义域是   
计算:manfen5.com 满分网=   
(文)在平面直角坐标系xoy中,若在曲线C1的方程F(x,y)=0中,以(λx,λy)(λ为正实数)代替(x,y)得到曲线C2的方程F(λx,λy)=0,则称曲线C1、C2关于原点“伸缩”,变换(x,y)→(λx,λy)称为“伸缩变换”,λ称为伸缩比.
(1)已知曲线C1的方程为manfen5.com 满分网,伸缩比λ=2,求C1关于原点“伸缩变换”后所得曲线C2的方程;

(2)已知抛物线C1:y2=2x,经过伸缩变换后得抛物线C2:y2=32x,求伸缩比λ.
(3)射线l的方程manfen5.com 满分网,如果椭圆C1manfen5.com 满分网经“伸缩变换”后得到椭圆C2,若射线l与椭圆C1、C2分别交于两点A、B,且manfen5.com 满分网,求椭圆C2的方程.
(理)在平面直角坐标系xoy中,若在曲线C1的方程F(x,y)=0中,以(λx,λy)(λ为正实数)代替(x,y)得到曲线C2的方程F(λx,λy)=0,则称曲线C1、C2关于原点“伸缩”,变换(x,y)→(λx,λy)称为“伸缩变换”,λ称为伸缩比.
(1)已知曲线C1的方程为manfen5.com 满分网,伸缩比λ=2,求C1关于原点“伸缩变换”后所得曲线C2的方程;
(2)射线l的方程manfen5.com 满分网,如果椭圆C1manfen5.com 满分网经“伸缩变换”后得到椭圆C2,若射线l与椭圆C1、C2分别交于两点A、B,且manfen5.com 满分网,求椭圆C2的方程;
(3)对抛物线C1:y2=2p1x,作变换(x,y)→(λ1x,λ1y),得抛物线C2:y2=2p2x;对C2作变换(x,y)→(λ2x,λ2y)得抛物线C3:y2=2p3x,如此进行下去,对抛物线Cn:y2=2pnx作变换(x,y)→(λnx,λny),得抛物线Cn+1:y2=2pn+1x,….若manfen5.com 满分网,求数列{pn}的通项公式pn
(文)已知向量manfen5.com 满分网manfen5.com 满分网 (n为正整数),函数manfen5.com 满分网,设f(x)在(0,+∞)上取最小值时的自变量x取值为an
(1)求数列{an}的通项公式;
(2)已知数列{bn},其中bn=an+12-an2,设Sn为数列{bn}的前n项和,求manfen5.com 满分网
(3)已知点列A1(1,a12)、A2(2,a22)、A3(3,a32)、…、An(n,an2)、…,设过任意两点Ai,Aj(i,j为正整数)的直线斜率为kij,当i=2008,j=2010时,求直线AiAj的斜率.
(理)已知向量manfen5.com 满分网manfen5.com 满分网 (n为正整数),函数manfen5.com 满分网,设f(x)在(0,+∞)上取最小值时的自变量x取值为an
(1)求数列{an}的通项公式;
(2)已知数列{bn},对任意正整数n,都有bn•(4an2-5)=1成立,设Sn为数列{bn}的前n项和,求manfen5.com 满分网
(3)在点列A1(1,a1)、A2(2,a2)、A3(3,a3)、…、An(n,an)、…中是否存在两点Ai,Aj(i,j为正整数)使直线AiAj的斜率为1?若存在,则求出所有的数对(i,j);若不存在,请你写出理由.
共1028964条记录 当前(82631/102897) 首页 上一页 82626 82627 82628 82629 82630 82631 82632 82633 82634 82635 82636 下一页 末页 转到 GO
Copyright @ 2019 满分5 学习网 ManFen5.COM. All Rights Reserved.