如图1是一个三棱柱包装盒,它的底面是边长为10cm的正三角形,三个侧面都是矩形.现将宽为15cm的彩色矩形纸带AMCN裁剪成一个平行四边形ABCD(如图2),然后用这条平行四边形纸带按如图3的方式把这个三棱柱包装盒的侧面进行包贴(要求包贴时没有重叠部分),纸带在侧面缠绕三圈,正好将这个三棱柱包装盒的侧面全部包贴满.在图3中,将三棱柱沿过点A的侧棱剪开,得到如图4的侧面展开图.为了得到裁剪的角度,我们可以根据展开图拼接出符合条件的平行四边形进行研究. (1)请在图4中画出拼接后符合条件的平行四边形; (2)请在图2中,计算裁剪的角度(即∠ABM的度数). ![]() ![]() |
|
某商店在四个月的试销期内,只销售A,B两个品牌的电视机,共售出400台.试销结束后,将决定经销其中的一个品牌.为作出决定,经销人员正在绘制两幅统计图,如图1和图2. (1)第四个月销量占总销量的百分比是______; (2)在图2中补全表示B品牌电视机月销量的折线图; (3)经计算,两个品牌电视机月销量的平均水平相同,请你结合折线的走势进行简要分析,判断该商店应经销哪个品牌的电视机. ![]() |
|
如图,四边形ABCD是平行四边形,以AB为直径的⊙O经过点D,E是⊙O上一点,且∠AED=45°. (1)试判断CD与⊙O的位置关系,并证明你的结论; (2)若⊙O的半径为3,sin∠ADE= ![]() ![]() |
|
如图,在梯形ABCD中,AD∥BC,BD是∠ABC的平分线. (1)求证:AB=AD; (2)若∠ABC=60°,BC=3AB,求∠C的度数. ![]() |
|
如图,矩形ABCD的边AB在x轴上,AB的中点与原点O重合,AB=2,AD=1,点Q的坐标为(0,2). (1)求直线QC的解析式; (2)点P(a,0)在边AB上运动,若过点P、Q的直线将矩形ABCD的周长分成3:1两部分,求出此时a的值. ![]() |
|
为了配合学校开展的“爱护地球母亲”主题活动,初三(1)班提出“我骑车我快乐”的口号.“五一”之后小明不用父母开车送,坚持自己骑车上学.五月底他对自己家的用车情况进行了统计,5月份所走的总路程比4月份的![]() |
|
如图,点D在AB上,DF交AC于点E,CF∥AB,AE=EC. 求证:AD=CF. ![]() |
|
如图,点A、B、C的坐标分别为(3,3)、(2,1)、(5,1),将△ABC先向下平移4个单位,得△A1B1C1;再将△A1B1C1沿y轴翻折,得 △A2B2C2. (1)画出△A1B1C1和△A2B2C2; (2)求线段B2C长. ![]() |
|
解方程:![]() |
|
先化简:(2x+1)2+(x+2)(x-2)-4x(x+1),再求值,其中![]() |
|