在一次课外实践活动中,同学们要测量某公园人工湖两侧A,B两个凉亭之间的距离.现测得AC=30m,BC=70m,∠CAB=120°,请计算A,B两个凉亭之间的距离.
|
|
已知:如图,四边形ABCD是菱形,过AB的中点E作AC的垂线EF,交AD于点M,交CD的延长线于点F. (1)求证:AM=DM; (2)若DF=2,求菱形ABCD的周长.
|
|
为了比较市场上甲、乙两种电子钟每日走时误差的情况,从这两种电子钟中,各随机抽取10台进行测试,两种电子钟走时误差的数据如下表(单位:秒):
编号 类型 | 一 | 二 | 三 | 四 | 五 | 六 | 七 | 八 | 九 | 十 | 甲种电子钟 | 1 | -3 | -4 | 4 | 2 | -2 | 2 | -1 | -1 | 2 | 乙种电子钟 | 4 | -3 | -1 | 2 | -2 | 1 | -2 | 2 | -2 | 1 | (1)计算甲、乙两种电子钟走时误差的平均数; (2)计算甲、乙两种电子钟走时误差的方差; (3)根据经验,走时稳定性较好的电子钟质量更优.若两种类型的电子钟价格相同,请问:你买哪种电子钟?为什么?
|
|
计算:.
|
|
如图,正方形纸片ABCD的边长为1,M、N分别是AD、BC边上的点,将纸片的一角沿过点B的直线折叠,使A落在MN上,落点记为A′,折痕交AD于点E,若M、N分别是AD、BC边的中点,则A′N= ;若M、N分别是AD、BC边的上距DC最近的n等分点(n≥2,且n为整数),则A′N= (用含有n的式子表示).
|
|
如图,梯形ABCD中,AD∥BC,∠C=90°,AB=AD=4,BC=6,以A为圆心在梯形内画出一个最大的扇形(图中阴影部分)的面积是 .
|
|
如图,已知△ADC中,∠ADC=90°,AD=DC,三角形的顶点在相互平行的三条直线l1,l2,l3上,且l1,l2之间的距离为2,l2,l3之间的距离为3,则AC的长是 .
|
|
如图,把矩形ABCD沿EF折叠,使点B落在边AD上的点B′处,点A落在A′处,若AE=a,AB=b,BF=c,请写出a,b,c之间的一个等量关系 .
|
|
如图,一个圆形转盘被等分成五个扇形区域,上面分别标有数字1,2,3,4,5,转盘指针的位置固定,转动转盘后任其自由停止.转动转盘一次,当转盘停止转动时,记指针指向标有偶数所在区域的概率为P(偶数),指针指向标有奇数所在区域的概率为P(奇数),则P(偶数) P(奇数).
|
|