如图,在四边形ABCD中,∠A=90°,∠ABC与∠ADC互补. (1)求∠C的度数; (2)若BC>CD且AB=AD,请在图上画出一条线段,把四边形ABCD分成两部分,使得这两部分能够重新拼成一个正方形,并说明理由; (3)若CD=6,BC=8,S四边形ABCD=49,求AB的值. ![]() |
|
如图,△ABC中,D、E分别是边BC、AB的中点,AD、CE相交于G. 求证: ![]() ![]() |
|
如图,已知△ABC,∠ACB=90°,AC=BC,点E、F在AB上,∠ECF=45°. (1)求证:△ACF∽△BEC; (2)设△ABC的面积为S,求证:AF•BE=2S; (3)试判断以线段AE、EF、FB为边的三角形的形状并给出证明. ![]() |
|
(1)把两个含有45°角的直角三角板如图1放置,点D在BC上,连接BE,AD,AD的延长线交BE于点F.求证:AF⊥BE. (2)把两个含有30°角的直角三角板如图2放置,点D在BC上,连接BE,AD,AD的延长线交BE于点F.问AF与BE是否垂直?并说明理由. ![]() |
|
AB是⊙O的直径,点E是半圆上一动点(点E与点A、B都不重合),点C是BE延长线上的一点,且CD⊥AB,垂足为D,CD与AE交于点H,点H与点A不重合. (1)求证:△AHD∽△CBD; (2)连HO,若CD=AB=2,求HD+HO的值. ![]() |
|
如图,在△ABC中,∠C=90°,在AB边上取一点D,使BD=BC,过D作DE⊥AB交AC于E,AC=8,BC=6.求DE的长.![]() |
|
已知A、D是一段圆弧上的两点,且在直线l的同侧,分别过这两点作l的垂线,垂足为B、C,E是BC上一动点,连接AD、AE、DE,且∠AED=90度. (1)如图①,如果AB=6,BC=16,且BE:CE=1:3,求AD的长; (2)如图②,若点E恰为这段圆弧的圆心,则线段AB、BC、CD之间有怎样的等量关系?请写出你的结论并予以证明.再探究:当A、D分别在直线l两侧且AB≠CD,而其余条件不变时,线段AB、BC、CD之间又有怎样的等量关系?请直接写出结论,不必证明. ![]() |
|
如图,△ABC是等边三角形,⊙O过点B,C,且与BA,CA的延长线分别交于点D,E,弦DF∥AC,EF的延长线交BC的延长线于点G. (1)求证:△BEF是等边三角形; (2)若BA=4,CG=2,求BF的长. ![]() |
|
如图,点C、D在线段AB上,△PCD是等边三角形. (1)当AC、CD、DB满足怎样的关系时,△ACP∽△PDB; (2)当△ACP∽△PDB时,求∠APB的度数. ![]() |
|
已知:如图,在△ABC中,D为AB边上一点,∠A=36°,AC=BC,AC2=AB•AD. (1)试说明:△ADC和△BDC都是等腰三角形;(2)若AB=1,求AC的值; (3)试构造一个等腰梯形,该梯形连同它的两条对角线,得到了8个三角形,要求构造出的图形中有尽可能多的等腰三角形.(标明各角的度数) ![]() |
|