如图:四边形ABCD中,E、F、G、H分别为各边的中点,顺次连接E、F、G、H,把四边形EFGH称为中点四边形.连接AC、BD,容易证明:中点四边形EFGH一定是平行四边形. (1)如果改变原四边形ABCD的形状,那么中点四边形的形状也随之改变,通过探索可以发现:当四边形ABCD的对角线满足AC=BD时,四边形EFGH为菱形. 当四边形ABCD的对角线满足______时,四边形EFGH为矩形; 当四边形ABCD的对角线满足______时,四边形EFGH为正方形; (2)探索三角形AEH、三角形CFG与四边形ABCD的面积之间的等量关系,请写出你发现的结论,并加以证明; (3)如果四边形ABCD的面积为2,那么中点四边形EFGH的面积是多少? ![]() |
|
如图,在边长为4的正方形ABCD中,点P在AB上从A向B运动,连接DP交AC于点Q. (1)试证明:无论点P运动到AB上何处时,都有△ADQ≌△ABQ; (2)当点P在AB上运动到什么位置时,△ADQ的面积是正方形ABCD面积的 ![]() (3)若点P从点A运动到点B,再继续在BC上运动到点C,在整个运动过程中,当点P运动到什么位置时,△ADQ恰为等腰三角形. ![]() |
|
如图1,四边形ABCD是正方形,G是CD边上的一个动点(点G与C、D不重合),以CG为一边在正方形ABCD外作正方形CEFG,连接BG,DE.我们探究下列图中线段BG、线段DE的长度关系及所在直线的位置关系: (1)①猜想如图1中线段BG、线段DE的长度关系及所在直线的位置关系; ②将图1中的正方形CEFG绕着点C按顺时针(或逆时针)方向旋转任意角度α,得到如图2,如图3情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,并选取图2证明你的判断; ![]() (2)将原题中正方形改为矩形(如图4-6),且AB=a,BC=b,CE=ka,CG=kb(a≠b,k>0),第(1)题①中得到的结论哪些成立,哪些不成立?若成立,以图5为例简要说明理由; ![]() (3)在第(2)题图5中,连接DG、BE,且a=3,b=2,k= ![]() |
|
如图①,四边形ABCD是正方形,点G是BC上任意一点,DE⊥AG于点E,BF⊥AG于点F. (1)求证:DE-BF=EF; (2)当点G为BC边中点时,试探究线段EF与GF之间的数量关系,并说明理由; (3)若点G为CB延长线上一点,其余条件不变.请你在图②中画出图形,写出此时DE、BF、EF之间的数量关系(不需要证明). ![]() |
|
如图,在矩形ABCD中,AB=4,AD=10,直角尺的直角顶点P在AD上滑动时(点P与A,D不重合),一直角边经过点C,另一直角边AB交于点E,我们知道,结论“Rt△AEP∽Rt△DPC”成立. (1)当∠CPD=30°时,求AE的长; (2)是否存在这样的点P,使△DPC的周长等于△AEP周长的2倍?若存在,求出DP的长;若不存在,请说明理由. ![]() |
|
(根据课本习题改编)如图1,在△ABC中,∠C=90°,AC=4,BC=3,四边形DEFG为△ABC的内接正方形,若设正方形的边长为x,容易算出x的长为![]() 探究与计算: (1)如图2,若三角形内有并排的两个全等的正方形,它们组成的矩形内接于△ABC,则正方形的边长为______; (2)如图3,若三角形内有并排的三个全等的正方形,它们组成的矩形内接于△ABC,则正方形的边长为______; (3)如图4,若三角形内有并排的n个全等的正方形,它们组成的矩形内接于△ABC,请你猜想正方形的边长是多少?并对你的猜想进行证明. ![]() |
|
如图1,半圆O为△ABC的外接半圆,AC为直径,D为![]() (1)问添加一个什么条件后,能使得 ![]() (2)若AB∥OD,点D所在的位置应满足什么条件?请说明理由; (3)如图2,在(1)和(2)的条件下,四边形AODB是什么特殊的四边形?证明你的结论. ![]() |
|
如图1,在△ABC中,AB=BC=5,AC=6.△ECD是△ABC沿BC方向平移得到的,连接AE.AC和BE相交于点O. (1)判断四边形ABCE是怎样的四边形,说明理由; (2)如图2,P是线段BC上一动点(图2),(不与点B、C重合),连接PO并延长交线段AB于点Q,QR⊥BD,垂足为点R. ①四边形PQED的面积是否随点P的运动而发生变化?若变化,请说明理由;若不变,求出四边形PQED的面积; ②当线段BP的长为何值时,△PQR与△BOC相似. ![]() |
|
如图,在平行四边形ABCD中,AE⊥BC于E,AF⊥CD于F,BD与AE、AF分别相交于G、H. (1)求证:△ABE∽△ADF; (2)若AG=AH,求证:四边形ABCD是菱形. ![]() |
|
如图,在菱形ABCD中,点E在CD上,连接AE并延长与BC的延长线交于点F. (1)写出图中所有的相似三角形(不需证明); (2)若菱形ABCD的边长为6,DE:AB=3:5,试求CF的长. ![]() |
|