|
已知AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O的切线交AB的延长线于F,切点为G,连接AG交CD于K. (1)如图1,求证:KE=GE; (2)如图2,连接CABG,若∠FGB= (3)如图3,在(2)的条件下,连接CG交AB于点N,若sinE=
|
|
|
如图1,在平面直角坐标系xOy中,直线l:
(1)求n的值和抛物线的解析式; (2)点D在抛物线上,且点D的横坐标为t(0<t<4).DE∥y轴交直线l于点E,点F在直线l上,且四边形DFEG为矩形(如图2).若矩形DFEG的周长为p,求p与t的函数关系式以及p的最大值; (3)M是平面内一点,将△AOB绕点M沿逆时针方向旋转90°后,得到△A1O1B1,点A、O、B的对应点分别是点A1、O1、B1.若△A1O1B1的两个顶点恰好落在抛物线上,请直接写出点A1的横坐标.
|
|
|
某商店欲购进一批跳绳,若同时购进A种跳绳10根和B种跳绳7根,则共需395元,若同时购进A种跳绳5根和B种跳绳3根,共需185元 (1)求A、B两种跳绳的单价各是多少? (2)若该商店准备同时购进这两种跳绳共100根,且A种跳绳的数量不少于跳绳总数量的
|
|
|
如图,一次函数y=x+k图象过点A(1,0),交y轴于点B,C为y轴负半轴上一点,且OB= (1)求这条抛物线的解析式; (2)直接写出使一次函数值小于二次函数值时x的取值范围.
|
|
|
某学校为了增强学生体质,决定开设以下体育课外活动项目:A:篮球 B:乒乓球C:羽毛球 D:足球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:
(1)这次被调查的学生共有 人; (2)请你将条形统计图(2)补充完整; (3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答)
|
|
|
如图,AD是Rt△ABC斜边BC上的高. (1)尺规作图:作∠C的平分线,交AB于点E,交AD于点F(不写作法,必须保留作图痕迹,标上应有的字母); (2)在(1)的条件下,过F画BC的平行线交AC于点H,线段FH与线段CH的数量关系如何?请予以证明; (3)在(2)的条件下,连结DE、DH.求证:ED⊥HD.
|
|
|
计算 (1) (2)
|
|
|
如图,在▱ABCD中,E是BC的中点,连接AE并延长交DC的延长线于点F.
(1)求证:AB=CF; (2)连接DE,若AD=2AB,求证:DE⊥AF.
|
|
|
如图,在矩形ABCD中,点O在对角线AC上,以OA的长为半径的⊙O与AD,AC分别交于点E,F,且∠ACB=∠DCE,tan∠ACB= ①CD=
|
|
|
如图,已知动点A在函数y=
|
|
