A. 5 B.
|
|
如图,抛物线y=nx2﹣3nx﹣4n(n<0)与x轴交于B、C两点(点B在点C的左侧),且抛物线与y轴交于点A. (1)点B的坐标为 ,点C的坐标为 ; (2)若∠BAC=90°,求抛物线的解析式. (3)点M是(2)中抛物线上的动点,点N是其对称轴上的动点,是否存在这样的点M、N,使得以A、C、M、N为顶点的四边形是平行四边形?若存在,请直接写出点M的坐标;若不存在,请说明理由.
|
|
(1)操作与探究:如图,矩形纸片ABCD中,AB=8,将纸片折叠,使顶点B落在边AD的E点上,折痕的一端G点在边BC上,BG=10. ①第一次折叠:当折痕的另一端点F在AB边上时,如图1,求折痕GF的长; ②第二次折叠:当折痕的另一端点F在AD边上时,如图2,证明四边形BGEF为菱形,并求出折痕GF的长. (2)拓展延伸:通过操作探究发现在矩形纸片ABCD中,AB=5,AD=13.如图3所示,折叠纸片,使点A落在BC边上的A′处,折痕为PQ.当点A′在BC边上移动时,折痕的端点P,Q也随之移动.若限定点P,Q分别在AB,AD边上移动,则点A′在BC边上可移动的最大距离是 .
|
|
阅读理【解析】 反比例函数y= (1)问题提出:线段PB:PA与BR:RC有怎样的关系? 问题解决:设点PA=n,PB=m,则点P的坐标为(n, 则BR:RC= PB:PA= ∴PB:PA=BR:RC. 问题应用: (2)利用上面的结论解决问题: ①如图1,如果BR=6,CR=3,AP=4,BP=_____. ②如图2,如果直线PR的关系式y2=﹣x+3,与x轴交于点D,与y轴交于点E,若ED=3PR,求出k的值.
|
|
近几年来,为了缓减环境污染,某区加大了对煤改电的投资力度,该区居民在2015年有7500户完成煤改电,2017年有10800户完成了煤改电. (1)求该区2015年至2017年完成煤改电户数的年平均增长率; (2)2018年该区计划要完成煤改电的户数比2017年要有所增长,但增长率不超过15%,请求出2018年最多有多少户能完成煤改电.
|
|
如图1是一种折叠式可调节的鱼竿支架的示意图,AE是地插,用来将支架固定在地面上,支架AB可绕A点前后转动,用来调节AB与地面的夹角,支架CD可绕AB上定点C前后转动,用来调节CD与AB的夹角,支架CD带有伸缩调节长度的伸缩功能,已知BC=60cm. (1)若支架AB与地面的夹角∠BAF=35°,支架CD与钓鱼竿DB垂直,钓鱼竿DB与地面AF平行,则支架CD的长度为 cm(精确到0.1cm);(参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70). (2)如图2,保持(1)中支架AB与地面的夹角不变,调节支架CD与AB的夹角,使得∠DCB=85°,若要使钓鱼竿DB与地面AF仍然保持平行,则支架CD的长度应该调节为多少?(结果保留根号)
|
|
某服装厂里有许多剩余的三角形边角料,找出一块△ABC,测得∠C=90°(如图),现要从这块三角形上剪出一个半圆O,做成玩具,要求:使半圆O与三角形的两边AB、AC相切,切点分别为D、C,且与BC交于点E. (1)在图中设计出符合要求的方案示意图.(要求:尺规作图,不写作法,保留作图痕迹). (2)Rt△ABC中,AC=3,AB=5,连接AO,求出AO的长度.
|
|
学校教育将“立德树人”置于首位,某校在开展以“社会主义核心价值观”为主题的征文活动中,(一)班计划从2份“爱国”和2份“诚信”为主题的征文中随机选取2份进行交流,利用树状图或表格计算,在所选取的2份征文中,“爱国”为主题的征文同时被抽中的概率.
|
|
(1)6tan30°﹣|﹣ (2)先化简,再求值:
|
|
互联网的时代离不开计算机,计算机的工作原理是将信息化成二进制进行处理,二进制即“逢二进一”.(1)2、(10)2、(101)2都表示二进制的数,将这些二进制数转化成十进制数,如:(1)2=1×20=1;(10)2=1×21+0×20=2;(101)2=1×22+0×21+1×20=5.则将二进制数(11011)2转化成十进制数的结果是_____.
|
|