已知二次函数 (1)求证:不论a与m为何值,该函数的图像与x轴总有两个公共点; (2)设该函数的图像的顶点为C,与x轴交于A、B两点,与y轴交于点D。 ①当△ABC的面积等于1时,求a的值: ②当△ABC的面积与△ABD的面积相等时,求m的值。
|
|
如图,AD是圆O的切线,切点为A,AB是圆O的弦。过点B作BC//AD,交圆O于点C,连接AC,过点C作CD//AB,交AD于点D。连接AO并延长交BC于点M,交过点C的直线于点P,且ÐBCP=ÐACD。 (1)判断直线PC与圆O的位置关系,并说明理由: (2)若AB=9,BC=6,求PC的长。
|
|
小丽驾车从甲地到乙地。设她出发第x min时的速度为y km/h,图中的折线表示她在整个驾车过程中y与x之间的函数关系。 (1)小丽驾车的最高速度是 km/h; (2)当20£x£30时,求y与x之间的函数关系式,并求出小丽出发第22 min时的速度; (3)如果汽车每行驶100 km耗油10 L,那么小丽驾车从甲地到乙地共耗油多少升?
|
|
某商场促销方案规定:商场内所有商品案标价的80%出售,同时,当顾客在商场内消费满一定金额后,按下表获得相应的返还金额。
注:300~400表示消费金额大于300元且小于或等于400元,其他类同。 根据上述促销方案,顾客在该商场购物可以获得双重优惠。例如,若购买标价为400元的商品,则消费金额为320元,获得的优惠额为400´(1-80%)+30=110(元)。 (1)购买一件标价为1000元的商品,顾客获得的优惠额是多少? (2)如果顾客购买标价不超过800元的商品,要使获得的优惠额不少于226元,那么该商品的标价至少为多少元?
|
|||||||||||||||
已知不等臂跷跷板AB长4m。如图①,当AB的一端碰到地面时,AB与地面的夹角为a;如图②,当AB的另一端B碰到地面时,AB与地面的夹角为b。求跷跷板AB的支撑点O到地面的高度OH。(用含a、b的式子表示)
|
|
某校有2000名学生,为了解全校学生的上学方式,该校数学兴趣小组在全校随机抽取了150名学生进行抽样调查。整体样本数据,得到下列图表: (1)理解画线语句的含义,回答问题:如果150名学生全部在同一个年级抽取,这样的抽样是否合理?请说明理由: (2)根据抽样调查的结果,将估计出的全校2000名学生上学方式的情况绘制成条形统计图; (3)该校数学兴趣小组结合调查获取的信息,向学校提出了一些建议。如:骑车上学的学生数约占全校的34%,建议学校合理安排自行车停车场地。请你结合上述统计的全过程,再提出一条合理化建议: 。
|
|
(1)一只不透明的袋子中装有颜色分别为红、黄、蓝、白的球各一个,这些球除颜色外都相同。求下列事件的概率: ①搅匀后从中任意摸出1个球,恰好是红球; ②搅匀后从中任意摸出1个球,记录下颜色后放回袋子中并搅匀,再从中任意摸出1个球,两次都是红球; (2)某次考试有6道选择题,每道题所给出的4个选项中,恰有一项是正确的,如果小明从每道题的4个选项中随机地选择1个,那么他6道选择题全部选择正确的概率是 A.
|
|
如图,在四边形ABCD中,AB=BC,对角线BD平分ÐABC,P是BD上一点,过点P作PM^AD,PN^CD,垂足分别为M、N。 (1)求证:ÐADB=ÐCDB; (2)若ÐADC=90°,求证:四边形MPND是正方形。
|
|
解方程
|
|
化简
|
|