已知AB是⊙O的直径,AB=4,点C在线段AB的延长线上运动,点D在⊙O 上运动(不与点B重合),连接CD,且CD=OA. (1)当OC= (2)当OC> ①当D为CE中点时,求△ACE的周长; ②连接OD,是否存在四边形AODE为梯形?若存在,请说明梯形个数并求此时AE·ED的值;若不存在,请说明理由。
|
|
如图,在平面直角坐标系中,点O为坐标原点,正方形OABC的边OA、OC分别在x轴、y轴上,点B的坐标为(2,2),反比例函数 (1)求k的值; (2)若点P(x,y)在该反比例函数的图像上运动(不与点D重合),过点P作PR⊥y轴于点R,作PQ⊥BC所在直线于点Q,记四边形CQPR的面积为S,求S关于x的解析式并写出x的取值范围。
|
|
如图,在东西方向的海岸线MN上有A、B两艘船,均收到已触礁搁浅的船P的求救信号,已知船P在船A的北偏东58°方向,船P在船B的北偏西35°方向,AP的距离为30海里. (1)求船P到海岸线MN的距离(精确到0.1海里); (2)若船A、船B分别以20海里/小时、15海里/小时的速度同时出发,匀速直线前往救援,试通过计算判断哪艘船先到达船P处.
|
|
在某项针对18~35岁的青年人每天发微博数量的调查中,设一个人的“日均发微博条数”为m,规定:当m≥10时为A级,当5≤m<10时为B级,当0≤m<5时为C级.现随机抽取30个符合年龄条件的青年人开展每人“日均发微博条数”的调查,所抽青年人的“日均发微博条数”的数据如下:
(1)求样本数据中为A级的频率; (2)试估计1000个18~35岁的青年人中“日均发微博条数”为A级的人数; (3)从样本数据为C级的人中随机抽取2人,用列举法求抽得2个人的“日均发微博条数”都是3的概率.
|
||||||||||||||||||||||||||||||||||
已知四边形ABCD是平行四边形(如图),把△ABD沿对角线BD翻折180°得到△AˊBD. (1)利用尺规作出△AˊBD.(要求保留作图痕迹,不写作法); (2)设D Aˊ与BC交于点E,求证:△BAˊE≌△DCE.
|
|
先化简,再求值:
|
|
如图,四边形ABCD是菱形,对角线AC与BD相交于O,AB=5,AO=4,求BD的长.
|
|
解方程:
|
|
如图,在平面直角坐标系中,点O为坐标原点,点P在第一象限,⊙P与x轴交于O,A两点,点A的坐标为(6,0),⊙P的半径为
|
|
如图,Rt△ABC的斜边AB="16," Rt△ABC绕点O顺时针旋转后得到
|
|