(2011•达州)如图,由几个相同的小正方体搭成一个几何体,它的俯视图是( )![]() A. ![]() B. ![]() C. ![]() D. ![]() |
|
(2009•嘉兴)若x=(-2)×3,则x的倒数是( ) A. ![]() B. ![]() C.-6 D.6 |
|
(2011•呼伦贝尔)4的平方根是( ) A.±2 B.2 C.-2 D.16 |
|
(2009•临沂)如图,抛物线经过A(4,0),B(1,0),C(0,-2)三点. (1)求出抛物线的解析式; (2)P是抛物线上一动点,过P作PM⊥x轴,垂足为M,是否存在P点,使得以A,P,M为顶点的三角形与△OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由; (3)在直线AC上方的抛物线上有一点D,使得△DCA的面积最大,求出点D的坐标. ![]() |
|
(2012•东城区二模)如图,在矩形ABCD中,点O在对角线AC上,以OA的长为半径的⊙O与AD、AC分别交于点E、F,且∠ACB=∠DCE. (1)判断直线CE与⊙O的位置关系,并说明理由; (2)若AB= ![]() ![]() |
|
(2009•衢州)水产公司有一种海产品共2 104千克,为寻求合适的销售价格,进行了8天试销,试销情况如下:
(1)写出这个反比例函数的解析式,并补全表格; (2)在试销8天后,公司决定将这种海产品的销售价格定为150元/千克,并且每天都按这个价格销售,那么余下的这些海产品预计再用多少天可以全部售出? (3)在按(2)中定价继续销售15天后,公司发现剩余的这些海产品必须在不超过2天内全部售出,此时需要重新确定一个销售价格,使后面两天都按新的价格销售,那么新确定的价格最高不超过每千克多少元才能完成销售任务? |
||||||||||||||||||||||||||||
(2009•安徽)学校植物园沿路护栏纹饰部分设计成若干个全等菱形图案,每增加一个菱形图案,纹饰长度就增加dcm,如图所示.已知每个菱形图案的边长![]() (1)若d=26,则该纹饰要231个菱形图案,求纹饰的长度L; (2)当d=20时,若保持(1)中纹饰长度不变,则需要多少个这样的菱形图案? ![]() |
|
已知关于x的一元二次方程:x2-mx+2m-1的两个实数根分别是x1、x2,且x12+x22=14,求m的值. |
|
(2009•临夏州)如图,随机闭合开关S1、S2、S3中的两个,求能让灯泡ⓧ发光的概率.![]() |
|
(1)解不等式组:![]() ![]() (2)已知:x=2cos45°+1,y= ![]() |
|