(2005•黄石)已知:⊙O1与⊙O2相交于A、B两点,⊙O1的切线AC交⊙O2于点C.直线EF过点B交⊙O1于点E,交⊙O2于点F.![]() (1)若直线EF交弦AC于点K时(如图1).求证:AE∥CF; (2)若直线EF交弦AC的延长线于点时(如图2).求证:DA•DF=DC•DE; (3)若直线EF交弦AC的反向延长线于点(在图3自作),试判断(1)、(2)中的结论是否成立并证明你的正确判断. |
|
(2005•湘潭)如图,在直角梯形ABCD中,AB∥DC,∠B=90°,P为BC上一点. (1)若∠APD=90°,找出图中两个相似的三角形,并加以证明; (2)若AB=9,DC=4,P为BC的中点,∠APD=90°,求BC的长; (3)在(2)的条件下,试探求以AD为直径的圆与BC所在直线的位置关系,并予以证明. ![]() |
|
(2005•陕西)已知:如图,AB是⊙O的直径,点P在BA的延长线上,PD切⊙O于点C,BD⊥PD,垂足为D,连接BC. 求证:(1)BC平分∠PBD; (2)BC2=AB•BD. ![]() |
|
(2005•遂宁)如图,在梯形ABCD中,AD∥BC,BD=DC,∠A=100°,∠ABD=40°,求∠BDC的度数.![]() |
|
(2005•潍坊)(A题)某市经济开发区建有B、C、D三个食品加工厂,这三个工厂和开发区A处的自来水厂正好在一个矩形的四个顶点上,它们之间有公路相通,且AB=CD=900米,AD=BC=1700米.自来水公司已经修好一条自来水主管道AN,BC两厂之间的公路与自来水管道交于E处,EC=500米.若自来水主管道到各工厂的自来水管道由各厂负担,每米造价800元. (1)要使修建自来水管道的造价最低,这三个工厂的自来水管道路线应怎样设计并在图形中画出; (2)求出各厂所修建的自来水管道的最低的造价各是多少元? (B题)如图,已知平行四边形ABCD及四边形外一直线l,四个顶点A、B、C、D到直线l的距离分别为a、b、c、d. (1)观察图形,猜想得出a、b、c、d满足怎样的关系式?证明你的结论. (2)现将l向上平移,你得到的结论还一定成立吗?请分情况写出你的结论. ![]() |
|
(2005•大连)如图,AB∥CD,AB=CD,点B、E、F、D在一条直线上,∠A=∠C. 求证:AE=CF. 说明:证明过程中要写出每步的证明依据. ![]() |
|
(2005•安徽)如图,直线AB∥CD,直线EF分别交AB、CD于点M、N,∠EMB=50°,MG平分∠BMF,MG交CD于G,求∠1的度数.![]() |
|
(2005•广东)如图,AB∥CD,直线EF分别交AB、CD于点E、F,EG平分∠AEF,∠1=40°,求∠2的度数.![]() |
|
(2005•陕西)已知:直线a∥b,P、Q是直线a上的两点,M、N是直线b上两点. (1)如图①,线段PM、QN夹在平行直线a和b之间,四边形PMNQ为等腰梯形,其两腰PM=QN.请你参照图①,在图②中画出异于图①的一种图形,使夹在平行直线a和b之间的两条线段相等; (2)我们继续探究,发现用两条平行直线a、b去截一些我们学过的图形,会有两条“曲线段相等”(曲线上两点和它们之间的部分叫做“曲线段”.把经过全等变换后能重合的两条曲线段叫做“曲线段相等”).请你在图③中画出一种图形,使夹在平行直线a和b之间的两条曲线段相等; (3)如图④,若梯形PMNQ是一块绿化地,梯形的上底PQ=m,下底MN=n,且m<n.现计划把价格不同的两种花草种植在S1、S2、S3、S4四块地里,使得价格相同的花草不相邻.为了节省费用,园艺师应选择哪两块地种植价格较便宜的花草?请说明理由. ![]() |
|
(2005•山西)如图,将三角板的直角顶点放置在直线AB上的点O处,使斜边CD∥AB.则∠α的余弦值为 .![]() |
|