满分5 > 高中数学试题 >

已知椭圆的离心率为,右焦点为(,0),斜率为I的直线l与椭圆G交与A、B两点,以...

已知椭圆manfen5.com 满分网的离心率为manfen5.com 满分网,右焦点为(manfen5.com 满分网,0),斜率为I的直线l与椭圆G交与A、B两点,以AB为底边作等腰三角形,顶点为P(-3,2).
(I)求椭圆G的方程;
(Ⅱ)求△PAB的面积.
(I)根据椭圆离心率为,右焦点为(,0),可知c=,可求出a的值,再根据b2=a2-c2求出b的值,即可求出椭圆G的方程; (II)设出直线l的方程和点A,B的坐标,联立方程,消去y,根据等腰△PAB,求出直线l方程和点A,B的坐标,从而求出|AB|和点到直线的距离,求出三角形的高,进一步可求出△PAB的面积. 【解析】 (I)由已知得,c=,, 解得a=,又b2=a2-c2=4, 所以椭圆G的方程为. (II)设直线l的方程为y=x+m, 由得4x2+6mx+3m2-12=0.① 设A,B的坐标分别为(x1,y1),(x2,y2)(x1<x2),AB的中点为E(x,y), 则x==-, y=x+m=, 因为AB是等腰△PAB的底边, 所以PE⊥AB, 所以PE的斜率k=, 解得m=2. 此时方程①为4x2+12x=0. 解得x1=-3,x2=0, 所以y1=-1,y2=2, 所以|AB|=3,此时,点P(-3,2). 到直线AB:y=x+2距离d=, 所以△PAB的面积s=|AB|d=.
复制答案
考点分析:
相关试题推荐
已知椭圆manfen5.com 满分网.过点(m,0)作圆x2+y2=1的切线I交椭圆G于A,B两点.
(I)求椭圆G的焦点坐标和离心率;
(Ⅱ)将|AB|表示为m的函数,并求|AB|的最大值.
查看答案
已知椭圆manfen5.com 满分网+manfen5.com 满分网=1经过点P(manfen5.com 满分网manfen5.com 满分网),离心率是manfen5.com 满分网,动点M(2,t)(t>0)
(1)求椭圆的标准方程;
(2)求以OM为直径且别直线3x-4y-5=0截得的弦长为2的圆的方程;
(3)设F是椭圆的右焦点,过点F做OM的垂线与以OM为直径的圆交于点N,证明线段ON长是定值,并求出定值.

manfen5.com 满分网 查看答案
已知动点P与双曲线x2-y2=1的两个焦点F1,F2的距离之和为定值,且cos∠F1PF2的最小值为-manfen5.com 满分网,求动点P的轨迹方程.
查看答案
在平面直角坐标系xOy中,曲线y=x2-6x+1与坐标轴的交点都在圆C上
(Ⅰ)求圆C的方程;
(Ⅱ)若圆C与直线x-y+a=0交与A,B两点,且OA⊥OB,求a的值.
查看答案
对于曲线C:manfen5.com 满分网=1,给出下面四个命题:
①由线C不可能表示椭圆;
②当1<k<4时,曲线C表示椭圆;
③若曲线C表示双曲线,则k<1或k>4;
④若曲线C表示焦点在x轴上的椭圆,则1<k<manfen5.com 满分网
其中所有正确命题的序号为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.