如图,四面体中,
、
分别是
、
的中点,
(Ⅰ)求证:平面
;
(Ⅱ)求异面直线与
所成角余弦值的大小;
(Ⅲ)求点到平面
的距离.
某高校在2013年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩共分五组,得到频率分布表如下表所示。
组号 |
分组 |
频数 |
频率 |
第一组 |
[160,165) |
5 |
0.05 |
第二组 |
[165,170) |
35 |
0.35 |
第三组 |
[170,175) |
30 |
a |
第四组 |
[175,180) |
b |
0.2 |
第五组 |
[180,185) |
10 |
0.1 |
(Ⅰ)求的值;
(Ⅱ)为了能选出最优秀的学生,高校决定在笔试成绩高的第3、4、5组中用分层抽样的方法抽取12人进入第二轮面试,求第3、4、5组中每组各抽取多少人进入第二轮的面试;考生李翔的笔试成绩为178分,但不幸没入选这100人中,那这样的筛选方法对该生而言公平吗?为什么?
(Ⅲ)在(2)的前提下,学校决定在12人中随机抽取3人接受“王教授”的面试,设第4组中被抽取参加“王教授”面试的人数为,求
的分布列和数学期望.
已知函数
(Ⅰ)求函数的最小值和最小正周期;
(Ⅱ)设的内角
、
、
的对边分别为
、
、
且
,
,若向量
与向量
共线,求
、
的值.
用n个不同的实数可以得到
个不同的排列,每个排列为一行,写出一个
行的数阵,对第
行
,记
,
. 例如:用1,2,3,可得数阵如图所示,则
= ____ ;那么在用1,2,3,4,5形成的数阵中,
= .
在平面直角坐标系中,已知椭圆
的左焦点为
,左、右顶点分别为
,上顶点为
,过
三点作圆
(Ⅰ)若线段是圆
的直径,求椭圆的离心率;
(Ⅱ)若圆的圆心在直线
上,求椭圆的方程;
(Ⅲ)若直线交(Ⅱ)中椭圆于
,交
轴于
,求
的最大值
已知在
与
处都取得极值.
(Ⅰ) 求,
的值;
(Ⅱ)设函数,若对任意的
,总存在
,使得、
,求实数
的取值范围.