如图所示的两个斜面,倾角分别为37°和53°,在顶点两个小球A、B以同样大小的初速度分别向左、向右水平抛出,小球都落在斜面上,若不计空气阻力,则A、B两个小球平抛运动时间之比为( )
A.1:1 B.4:3 C.16:9 D.9:16
关于曲线运动,下列说法中正确的是( )
A.曲线运动一定是变速运动,变速运动也一定是曲线运动
B.匀速圆周运动速率保持不变,其加速度为0
C.将物体以某一初速度抛出,只在重力下的运动是平抛运动
D.平抛运动是匀变速直线运动,水平方向上速度保持不变
如图所示,两根相距L1的平行粗糙金属导轨固定在水平面上,导轨上分布着n 个宽度为d、间距为2d的匀强磁场区域,磁场方向垂直水平面向上。在导轨的左端连接一个阻值为R的电阻,导轨的左端距离第一个磁场区域L2的位置放有一根质量为m,长为L1,阻值为r的金属棒,导轨电阻及金属棒与导轨间的接触电阻均不计。某时刻起,金属棒在一水平向右的已知恒力F作用下由静止开始向右运动,已知金属棒与导轨间的动摩擦因数为μ,重力加速度为g。
(1)若金属棒能够匀速通过每个匀强磁场区域,求金属棒离开第2个匀强磁场区域时的速度v2的大小;
(2)在满足第(1)小题条件时,求第n个匀强磁场区域的磁感应强度Bn的大小;
(3)现保持恒力F不变,使每个磁场区域的磁感应强度均相同,发现金属棒通过每个磁场区域时电路中的电流变化规律完全相同,求金属棒从开始运动到通过第n个磁场区域的整个过程中左端电阻R上产生的焦耳热Q。
“太空粒子探测器”是安装在国际空间站上的一种粒子物理试验设备,用于探测宇宙中的奇异物质。该设备的原理可简化如下:如图所示,辐射状的加速电场区域边界为两个同心平行半圆弧面MN和M′N′,圆心为O,弧面MN与弧面M′N′间的电势差设为U,在加速电场的右边有一宽度为L的足够长的匀强磁场,磁感应强度大小为B,方向垂直纸面向里,磁场的右边界放有一足够长的荧光屏PQ。假设太空中漂浮着质量为m,电荷量为q的带正电粒子,它们能均匀地吸附到MN圆弧面上,并被加速电场从静止开始加速,不计粒子间的相互作用和其它星球对粒子引力的影响。
(1)若测得粒子在磁场中做匀速圆周运动的半径为,试求出U;
(2)若取,试求出粒子从O点到达荧光屏PQ的最短时间;
(3)若测得粒子在磁场中做匀速圆周运动的半径为,试求荧光屏PQ上发光的长度。
如图所示,所有轨道均光滑,轨道AB与水平面的夹角为θ=370,A点距水平轨道的高度为H=1.8m。一无动力小滑车质量为m=1.0kg,从A点沿轨道由静止滑下,经过水平轨道BC再滑入圆形轨道内侧,圆形轨道半径R=0.5m,通过圆形轨道最高点D然后从水平轨道E点飞出,E点右侧有一壕沟,E、F两点的竖直高度差h=1.25m,水平距离s=2.6m。不计小滑车通过B点时的能量损失,小滑车在运动全过程中可视为质点,g=10m/s2,sin370=0.6,cos370=0.8,求:
(1)小滑车从A滑到B所经历的时间;
(2)在圆形轨道最高点D处小滑车对轨道的压力大小;
(3)要使小滑车既能安全通过圆形轨道又不掉进壕沟,则小滑车至少应从离水平轨道多高的地方由静止滑下。
用发光二极管制成的LED灯具有发光效率高、使用寿命长等优点,在生产与生活中得到广泛应用。发光二极管具有单向导电性,正反向电阻相差较大。
(1)某同学先用如左图所示的多用电表来判断发光二极管的正负极,下列操作正确的是
A.测量前应旋动部件T,使指针对准电流的“0”刻线。
B.测量电阻时,将K旋转到电阻挡的适当位置,然后将两表笔短接时,旋动部件S,使指针对准电阻的“0”刻线。
C.为了使表笔与二极管两端接触良好,应采用如右图所示的操作,用手指将两表笔与待测电阻的两端压紧进行测量。
D.测量时,若发现指针偏转角度过小(此时旋钮K指在“×l00”),为了得到比较准确的测量结果,将K旋转到电阻挡“×1k”的位置。
(2)该同学使用多用电表欧姆挡的“×100”挡来测量二极管的正反向电阻,将红、黑表笔分别与二极管“长脚”和“短脚”接触时,发现指针几乎不动。调换接触脚后,指针偏转情况如下图所示,由图可读出此时二极管的正向阻值为 Ω。
(3)该同学设计了如左图所示的电路测量发光二极管的正向电阻,则发光二极管的“短脚”应与左图中 (选填“a”或“b”)端连接。
(4)按左图的电路图将右图中的实物连线补充完整。该同学在开关闭合之前,应将滑动变阻器的滑片滑至 端(填“c”或“d”)。