满分5 > 高中数学试题 >

如图,在四面体ABCD中,平面ABC⊥ACD,AB⊥BC,AD=CD,∠CAD=...

如图,在四面体ABCD中,平面ABC⊥ACD,AB⊥BC,AD=CD,∠CAD=30°
(Ⅰ)若AD=2,AB=2BC,求四面体ABCD的体积.
(Ⅱ)若二面角C-AB-D为60°,求异面直线AD与BC所成角的余弦值.

manfen5.com 满分网
(I)要求四面体ABCD的体积,必须确定它的高和底面,由已知,△ABC作为底面,高易作,根据线段的长度,即可求得四面体ABCD的体积; (Ⅱ)利用三垂线定理找出二面角C-AB-D的平面角,根据该角为60°,找到各边之间的关系,利用平移的方法找出异面直线AD与BC所成角,解三角形,即可求得异面直线AD与BC所成角的余弦值. 【解析】 (I)设F为AC的中点,由于AD=CD, 所以DF⊥AC. 故由平面ABC⊥平面ACD, 知DF⊥平面ABC,即DF是四面体ABCD的面ABC上的高,且DF=ADsin30°=1, AF=ADcos30°=, 在Rt△ABC中,因AC=2AF=2,AB=2BC, 由勾股定理易知BC=,AB=. 故四面体ABCD的体积V==. (II)设G,H分别为边CD,BD的中点,则FG∥AD,GH∥BC, 从而∠FGH是异面直线AD与BC所成角或其补角. 设E为边AB的中点,则EF∥BC,由AB⊥BC,知EF⊥AB, 又由(I)有DF⊥平面ABC,故由三垂线定理知DE⊥AB, 所以∠DEF为二面角C-AB-D的平面角,由题设知∠DEF=60°. 设AD=a,则DF=AD•SsinCAD=, 在Rt△DEF中,EF=DF•cotDEF==, 从而GH=BC=EF=,因Rt△ADE≌Rt△BDE, 故在Rt△BDF中,FH=. 又FG=AD=,从而在△FGH中,因FG=FH, 由余弦定理得cosFGH==.
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网已知在四棱锥P一ABCD中,底面ABCD是矩形,PA⊥平面ABCD,
PA=AD=1,AB=2,E、F分别是AB、PD的中点.
(Ⅰ)求证:AF∥平面PEC;
(Ⅱ)求PC与平面ABCD所成角的正切值;
(Ⅲ)求二面角P-EC-D的正切值.
查看答案
如图,在三棱柱ABC-A1B1C1中,AB⊥侧面BB1C1C,已知BC=1,∠BCC1=manfen5.com 满分网,BB1=2.
(1)求证:平面AC1B⊥平面ABC;
(2)试在棱CC1(不包含端点C,C1)上确定一点E的位置,使得EA⊥EB1

manfen5.com 满分网 查看答案
如图,平面PAD⊥平面ABCD,ABCD为正方形,∠PAD=90°,且PA=AD=2,E、F分别是线段PA、CD的中点.
(1)求证:PA⊥平面ABCD;
(2)求A点到平面BEF的距离.

manfen5.com 满分网 查看答案
若某几何体的三视图(单位:cm)如图所示,
(1)求该几何体体积;
(2)求该几何体表面积.

manfen5.com 满分网 查看答案
已知直线l1经过点A(2,a),B(a-1,3),直线l2经过点C(1,2),D(-3,a+2).
(1)若l1∥l2,求a的值;
(2)若l1⊥l2,求a的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.