满分5 > 高中数学试题 >

如图,在长方体ABCD-A1B1C1D1中,AB=BC=2,AA1=1,则BC1...

manfen5.com 满分网如图,在长方体ABCD-A1B1C1D1中,AB=BC=2,AA1=1,则BC1与平面BB1D1D所成角的正弦值为( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
由题意,由于图形中已经出现了两两垂直的三条直线所以可以利用空间向量的方法求解直线与平面所成的夹角. 【解析】 以D点为坐标原点,以DA、DC、DD1所在的直线为x轴、y轴、z轴,建立空间直角坐标系(图略), 则A(2,0,0),B(2,2,0),C(0,2,0),C1(0,2,1) ∴=(-2,0,1),=(-2,2,0),且为平面BB1D1D的一个法向量. ∴cos<,>═=. ∴BC1与平面BB1D1D所成角的正弦值为 故答案为D.
复制答案
考点分析:
相关试题推荐
已知直线m、n和平面α、β满足m⊥n,m⊥α,α⊥β,则( )
A.n⊥β
B.n∥β,或n⊂β
C.n⊥α
D.n∥α,或n⊂α
查看答案
已知m,n是两条不同直线,α,β,γ是三个不同平面,下列命题中正确的是( )
A.若m∥α,n∥α,则m∥n
B.若α⊥γ,β⊥γ,则α∥β
C.若m∥α,m∥β,则α∥β
D.若m⊥α,n⊥α,则m∥n
查看答案
已知函数f(x)=|x-a|,g(x)=x2+2ax+1(a为正实数),且函数f(x)与g(x)的图象在y轴上的截距相等.
(1)求a的值;
(2)对于函数F(x)及其定义域D,若存在x∈D,使F(x)=x成立,则称x为F(x)的不动点.若f(x)+g(x)+b在其定义域内存在不动点,求实数b的取值范围;
(3)若n为正整数,证明:manfen5.com 满分网
(参考数据:lg3=0.3010,manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网
查看答案
已知函数manfen5.com 满分网
(1)判断并证明函数的单调性;
(2)若函数为f(x)奇函数,求实数a的值;
(3)在(2)的条件下,若对任意的t∈R,不等式f(t2+2)+f(t2-tk)>0恒成立,求实数k的取值范围.
查看答案
如图所示,四棱锥P-ABCD底面是直角梯形,BA⊥AD,CD⊥AD,CD=2AB,PA⊥底面ABCD,E为PC的中点,PA=AD=AB=1.
(1)证明:EB∥平面PAD;
(2)证明:BE⊥平面PDC;
(3)求三棱锥B-PDC的体积V.

manfen5.com 满分网 查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.