根据三角形面积公式,解方程组得SA=2,SB=1,SC=3,进而算出以SA、SB、SC为长、宽、高的长方体的对角线长为,从而得到三棱锥外接球R=,最后用球的表面积公式,可得此三棱锥外接球表面积.
【解析】
设SA=x,SB=y,SC=z,则
因为△SAB,△SBC,△SAC都是以S为直角顶点的直角三角形,得
解之得:x=2,y=1,z=3即SA=2,SB=1,SC=3,
∵侧棱SA,SB,SC两两垂直,
∴以SA、SB、SC为过同一顶点的3条棱作长方体,该长方体的对角线长为
=,恰好等于三棱锥外接球的直径
由此可得外接球的半径R=得此三棱锥外接球表面积为S=4πR2=14π
故答案为:14π