满分5 > 高中数学试题 >

已知f(x)=xlnx,g(x)=x3+ax2-x+2. (Ⅰ)如果函数g(x)...

已知f(x)=xlnx,g(x)=x3+ax2-x+2.
(Ⅰ)如果函数g(x)的单调递减区间为manfen5.com 满分网,求函数g(x)的解析式;
(Ⅱ)在(Ⅰ)的条件下,求函数y=g(x)的图象在点P(-1,1)处的切线方程;
(Ⅲ)若不等式2f(x)≤g′(x)+2恒成立,求实数a的取值范围.
(I)求出g(x)的导函数,令导函数小于0得到不等式的解集,得到相应方程的两个根,将根代入,求出a的值. (II)求出g(x)的导数在x=-1的值即曲线的切线斜率,利用点斜式求出切线的方程. (III)求出不等式,分离出参数A,构造函数h(x),利用导数求出h(x)的最大值,令a大于等于最大值,求出a的范围. 【解析】 (I)g′(x)=3x2+2ax-1由题意3x2+2ax-1<0的解集是 即3x2+2ax-1=0的两根分别是. 将x=1或代入方程3x2+2ax-1=0得a=-1. ∴g(x)=x3-x2-x+2.(4分) (II)由(Ⅰ)知:g′(x)=3x2-2x-1,∴g′(-1)=4, ∴点p(-1,1)处的切线斜率k=g′(-1)=4, ∴函数y=g(x)的图象在点p(-1,1)处的切线方程为: y-1=4(x+1),即4x-y+5=0.(8分) (III)∵2f(x)≤g′(x)+2 即:2xlnx≤3x2+2ax+1对x∈(0,+∞)上恒成立 可得对x∈(0,+∞)上恒成立 设,则 令h′(x)=0,得(舍) 当0<x<1时,h′(x)>0;当x>1时,h′(x)<0 ∴当x=1时,h(x)取得最大值-2 ∴a≥-2. ∴a的取值范围是[-2,+∞).(13分)
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网如图,在三棱柱ABC-A1B1C1中,侧面ABB1A1,ACC1A1均为正方形,∠BAC=90°,点D是棱B1C1的中点.
(Ⅰ)求证:A1D⊥平面BB1C1C;
(Ⅱ)求证:AB1∥平面A1DC;
(Ⅲ)求二面角D-A1C-A的余弦值.
查看答案
为了缓解高考压力,某中学高三年级成立了文娱队,每位队员唱歌、跳舞至少会一项,其中会唱歌的有2人,会跳舞的有5人,现从中选2人.设ξ为选出的人中既会唱歌又会跳舞的人数,且manfen5.com 满分网
(1)求文娱队的人数;
(2)求ξ的分布列并计算Eξ.
查看答案
已知数列{an}满足,manfen5.com 满分网,n∈N×
(1)令bn=an+1-an,证明:{bn}是等比数列;
(2)求{an}的通项公式.
查看答案
在△ABC中,角A,B,C所对的边分别为a,b,c,且满足csinA=acosC.
(1)求角C的大小;
(2)求manfen5.com 满分网sinA-cos(B+manfen5.com 满分网)的最大值,并求取得最大值时角A、B的大小.
查看答案
(1)极坐标方程分别为ρ=2cosθ和ρ=sinθ的两个圆的圆心距为   
(2)如果关于x的不等式|x-3|-|x-4|<a的解集不是空集,则实数a的取值范围是   
(3)如图,AD是⊙O的切线,AC是⊙O的弦,过C作AD的垂线,垂足为B,CB与⊙O相交于点E,AE平分∠CAB,且AE=2,则AC=   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.