登录
|
注册
返回首页
联系我们
在线留言
满分5
>
高中数学试题
>
如图,在三棱柱ABC-A1B1C1中,侧面ABB1A1,ACC1A1均为正方形,...
如图,在三棱柱ABC-A
1
B
1
C
1
中,侧面ABB
1
A
1
,ACC
1
A
1
均为正方形,∠BAC=90°,点D是棱B
1
C
1
的中点.
(Ⅰ)求证:A
1
D⊥平面BB
1
C
1
C;
(Ⅱ)求证:AB
1
∥平面A
1
DC;
(Ⅲ)求二面角D-A
1
C-A的余弦值.
(I)由已知中侧面ABB1A1,ACC1A1均为正方形,由正方形的几何特征结合线面垂直的判定,易得AA1⊥平面ABC,即三棱柱ABC-A1B1C1是直三棱柱,再由点D是棱B1C1的中点,结合等腰三角形“三线合一”,及直三棱柱的几何特征,结合线面垂直的判定定理,即可得到A1D⊥平面BB1C1C; (Ⅱ)连接AC1,交A1C于点O,连接OD,由正方形的几何特征及三角形中位线的性质,可得OD∥AB1,进而结合线面平行的判定定理,我们易得,AB1∥平面A1DC; (Ⅲ)因为AB,AC,AA1两两互相垂直,故可以以A坐标原点,建立空间坐标系,求出几何体中各顶点的坐标,进而求出平面DA1C与平面A1CA的法向量,代入向量夹角公式,即可得到答案. (Ⅰ)证明:因为侧面ABB1A1,ACC1A1均为正方形, 所以AA1⊥AC,AA1⊥AB, 所以AA1⊥平面ABC,三棱柱ABC-A1B1C1是直三棱柱.(1分) 因为A1D⊂平面A1B1C1,所以CC1⊥A1D,(2分) 又因为A1B1=A1C1,D为B1C1中点, 所以A1D⊥B1C1.(3分) 因为CC1∩B1C1=C1, 所以A1D⊥平面BB1C1C.(4分) (Ⅱ)证明:连接AC1,交A1C于点O,连接OD, 因为ACC1A1为正方形,所以O为AC1中点,又D为B1C1中点, 所以OD为△AB1C1中位线,所以AB1∥OD,(6分) 因为OD⊂平面A1DC,AB1⊄平面A1DC, 所以AB1∥平面A1DC.(8分) (Ⅲ)【解析】 因为侧面ABB1A1,ACC1A1均为正方形,∠BAC=90°, 所以AB,AC,AA1两两互相垂直,如图所示建立直角坐标系A-xyz. 设AB=1,则.,(9分) 设平面A1DC的法向量为n=(x,y,z),则有,,x=-y=-z, 取x=1,得n=(1,-1,-1).(10分) 又因为AB⊥平面ACC1A1,所以平面ACC1A1的法向量为,(11分),(12分) 因为二面角D-A1C-A是钝角, 所以,二面角D-A1C-A的余弦值为.(13分)
复制答案
考点分析:
相关试题推荐
为了缓解高考压力,某中学高三年级成立了文娱队,每位队员唱歌、跳舞至少会一项,其中会唱歌的有2人,会跳舞的有5人,现从中选2人.设ξ为选出的人中既会唱歌又会跳舞的人数,且
.
(1)求文娱队的人数;
(2)求ξ的分布列并计算Eξ.
查看答案
已知数列{a
n
}满足,
,n∈N
×
.
(1)令b
n
=a
n+1
-a
n
,证明:{b
n
}是等比数列;
(2)求{a
n
}的通项公式.
查看答案
在△ABC中,角A,B,C所对的边分别为a,b,c,且满足csinA=acosC.
(1)求角C的大小;
(2)求
sinA-cos(B+
)的最大值,并求取得最大值时角A、B的大小.
查看答案
(1)极坐标方程分别为ρ=2cosθ和ρ=sinθ的两个圆的圆心距为
;
(2)如果关于x的不等式|x-3|-|x-4|<a的解集不是空集,则实数a的取值范围是
;
(3)如图,AD是⊙O的切线,AC是⊙O的弦,过C作AD的垂线,垂足为B,CB与⊙O相交于点E,AE平分∠CAB,且AE=2,则AC=
.
查看答案
设函数f(x)=
(x>0),观察:
f
1
(x)=f(x)=
,
f
2
(x)=f(f
1
(x))=
,
f
3
(x)=f(f
2
(x))=
,
f
4
(x)=f(f
3
(x))=
,
…
根据以上事实,由归纳推理可得:
当n∈N
*
且n≥2时,f
n
(x)=f(f
n-1
(x))=
.
查看答案
试题属性
题型:解答题
难度:中等
Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.